
� �������	��
 ��

Speeding Up GENESIS Simulations

ERIK DE SCHUTTER and DAVID BEEMAN

20.1 Introduction

As your GENESIS simulations grow in complexity, either through increased level of detail
in multi-compartmental cell models, or through increased size of network models, you will
eventually begin to look for ways to increase the speed of your simulations. In the following
section, we present some general hints, methods and “tricks” that you can use to make your
simulations run faster. For models that contain many compartments, you can obtain large
speedups by using a more efficient numerical method for the integration of the compart-
mental equations. In fact, as we will see in Sec. 20.3.4, the default integration method that
is used in GENESIS is much better suited to simple cell models with few compartments.
The rest of this chapter describes how you may implement these improved methods, with
emphasis on the fast implicit methods that are associated with the GENESIS hsolve object.

20.2 Some General Hints

Here are some general suggestions for speeding up a GENESIS simulation:

Use multiple clocks A typical neural simulation has a variety of elements whose behavior
spans a range of time scales. As we have seen in Chapter 7, action potentials produced
by sodium channels have very rapid rise times, whereas some varieties of potassium
channels and changes in calcium concentration have time scales that can be on the

329

330 Chapter 20. Speeding Up GENESIS Simulations

order of minutes. Many simulators use a single integration step size for all parts
of the simulation and often automatically choose the integration step that is to be
used. Although this is a convenience to the user, it gives you less control over factors
that affect the speed and accuracy of the simulation. Chapter 13 described the use
of useclock and setclock for assigning different clocking rates to the simulation of
different elements. You can greatly speed up a simulation by using slower clocks for
simulation elements that can be updated at a slower rate. This is particularly useful in
the case of graphical elements. Some loss in resolution in plotted results can greatly
increase the speed of the simulation with no cost to the overall accuracy of the results.
It is not advisable to run computational elements (channels, compartments, . . .) at
different clock speeds, as this will often reduce the simulation accuracy to that of the
element with the slowest clock. In case of doubt, you should make sure that your
simulation is still giving the same results after making any changes to clocking rates.

Perform runs in “batch” mode Graphical output is very slow, because many plot mes-
sages are being exchanged at every simulation step. Most large research simulations
perform very little graphical output. The important data are written to a file to be
plotted and analyzed later. After you have tested your simulation interactively, mod-
ify the scripts to allow it to run without user input or graphical output when you are
ready for long runs. The Piriform and MultiCell simulation scripts give examples
of how you may cleanly separate the graphical and non-graphical simulation code.
This is also discussed in Sec. 22.7. The save and restore commands (described in the
GENESIS Reference Manual) can be used if you need to split the simulation into a
number of runs that begin at the state where the previous one stopped.

Simplify cell models Using the simplest possible cell model that has the desired character-
istics can make your network simulations run faster. For example, the somata in the
original Wilson and Bower (1989) olfactory cortex model had no Hodgkin-Huxley Na
and K channels. Instead of generating true action potentials, a soma simply passed
its Vm to a spike generator that fired a spike when Vm crossed a threshold. Often one
does some short runs with a fairly detailed model, and then starts making simplifi-
cations and approximations until an acceptable simple model is found. The Piriform
simulation scripts include the capability of using either this integrate-and-fire model
or the Hodgkin-Huxley model for action potential generation.

Use table lookup Many calculations can be greatly speeded up by looking up numeri-
cal values in a table, rather than calculating them. This is why tabchannel and
tab2Dchannel elements are processed much faster than hh channel elements. Sec-
tion 19.4.4 mentions ways to use the table object to replace other objects that nor-
mally perform a calculation.

20.2. Some General Hints 331

Use compiled functions Any GENESIS script that involves a large number of steps in a
loop is likely to be slow, because it is being processed by an interpreter. That is
why most GENESIS scripts merely create instances of precompiled objects and set
up messages to be passed between them. All of the real computation is done with
compiled code that is either part of compiled function definitions or part of the actions
defined for an object. If you find that you are using script language functions in a
manner that causes them to be invoked repeatedly during the course of a simulation, it
may be a good idea to write new functions in C, or write C code to define new actions
for an object. These may then be compiled into your own version of GENESIS, as
described in the GENESIS Reference Manual section on Customizing GENESIS.

Reduce “swapping” to disk If the progress of your simulation slows down significantly
and you begin hearing the sounds of increased disk activity, this is a sign that your
simulation has used up the amount of conventional memory that is available and
is swapping out parts of your simulation to disk. The GENESIS showstat -process
command can be used to tell how much memory your simulation is using at any point.
If closing down other applications that are running at the same time doesn’t give you
enough memory, it may be worth it to install more memory in your machine, or to
find ways to reduce the memory requirements of your simulation.

Use parallel computation GENESIS has been ported successfully to several parallel com-
puter platforms and to networked workstations. Both networks and single neuron
models have been parallelized by researchers using GENESIS. A version of GENE-
SIS, called PGENESIS, is available for use with the Parallel Virtual Machine (PVM),
allowing GENESIS to run on the many systems that support the PVM standard. Using
parallel computers has several potential advantages. First, they can increase execu-
tion speed, but there is a trade-off as increasing the number of computing processors
also increases the communication overhead between these processors. Second, be-
cause the model is distributed over a lot of processors’ memory, huge models can be
implemented. The simplest way to use parallel computers is as a “CPU-farm,” with-
out any communication between nodes. This is useful in situations where you need
to run the same simulation many times, using different sets of parameters, in order to
perform parameter space searches to “fine-tune” the model (Bhalla and Bower 1993,
De Schutter and Bower 1994c, Vanier and Bower 1996). This does not require any
special code and is equivalent to running GENESIS on a lot of workstations.

To get true parallelism, PGENESIS defines a new object, called the postmaster,
which takes care of all communication between processors (either on a parallel com-
puter or between different workstations). Using the postmaster is rather transparent.
For example, one can send a message to an element on another processor. For more
information about using PGENESIS, see Chapter 21 and the PGENESIS documen-

332 Chapter 20. Speeding Up GENESIS Simulations

tation.

Use faster numerical methods We have used the default integration method in the sim-
ulations that we have constructed so far. However, you may have noticed that the
Neurokit implementation of the Burster tutorial of Chapter 7 has a ���������	� dialog
box showing “
�
 ” and that the Cable tutorial of Chapter 5 provides a menu for se-
lecting the numerical method to be used. As we mentioned earlier (Sec. 2.4.2), there
are tradeoffs between speed, accuracy, and flexibility when choosing a numerical
method. The remainder of this chapter describes how you may use much faster nu-
merical methods in your simulations, and how to deal with some of the restrictions
that they place on your ability to modify the simulations.

20.3 Numerical Methods Used in GENESIS

In order to explain some of the issues involved in choosing an appropriate numerical inte-
gration method, we present here a discussion of the use of numerical methods for solving
the equations that arise in neural simulations. You may skip the rest of this section if you
are not interested in this level of detail. If you are interested in learning more about this
subject, you may wish to read the review by Mascagni (1989).

20.3.1 The Differential Equations Used in GENESIS

Equation 2.1, giving the membrane potential in a generalized neural compartment, and
Eq. 4.4 for the state of a Hodgkin-Huxley channel gate, are typical of the differential equa-
tions to be solved in a neural simulation. Both of these are members of a set of N coupled
first-order ordinary differential equations of the general form

dyi

dt
� f t � y1 � y2 ��������� yN � � with i � 1 ��������� N � (20.1)

In order to simplify the notation, we drop the subscript i and write the general equation
to be solved as

dy
dt

� f t � � (20.2)

However, you should keep in mind that the dependence on the time t usually enters implic-
itly through the time dependence of the various y’s. For example, in Eq. 2.1, the membrane
potentials in the adjacent compartments V � �m and V �m, the conductances Gk, and the injection
current Iin ject all depend on t.

20.3. Numerical Methods Used in GENESIS 333

20.3.2 Explicit Methods

Forward Euler Method

The forward Euler method is the simplest of the numerical methods available to GENESIS
for the solution of Eq. 20.2. For a time increment ∆t, we approximate y t � ∆t � by

y t � ∆t � � y t � � f t � ∆t � (20.3)

This approximation is equivalent to keeping only the first derivative in a Taylor series
expansion,

y t � ∆t � � y t � � dy
dt

∆t �
1
2

d2y
dt2 ∆t � 2 �

1
6

d3y
dt3 ∆t � 3 � ����� (20.4)

These terms that involve the higher derivatives can often be very large. We will later
see that the forward Euler method suffers from instability problems. Thus, this method is a
relatively poor approximation to the solution, and is rarely used in GENESIS simulations.

Adams-Bashforth Methods

The Adams-Bashforth methods approximate these missing higher derivatives by making
use of past values of f t � in the approximation for y t � ∆t � . The general form is

y t � ∆t � � y t � � ∆t a0 f t � � a1 f t � ∆t � � a2 f t � 2∆t � � ������� an f t � n∆t ��� � (20.5)

where the coefficients an may be found by expanding f t � n∆t � in a Taylor’s series and
comparing Eq. 20.5 with Eq. 20.4. If we evaluate f at n previous times in Eq. 20.5, we say
that this is an n � 1 � th order Adams-Bashforth method, because it corresponds to keeping
terms through the n � 1 � th derivative in the Taylor’s series expansion. GENESIS lets you
choose between second- through fifth-order Adams-Bashforth methods. These methods are
computationally very efficient, as they achieve higher accuracy by making use of “free”
information that has already been calculated at previous time steps.

A higher-order Adams-Bashforth method is said to have a small truncation error, as it
includes many terms in the Taylor’s series expansion. This means that the error introduced
at each step by the use of a finite value of ∆t will be small. However, the repeated use of
these equations may produce a large cumulative error after many integration steps. This is
because they depend on extrapolation from past values of f that may have little relevance for
the future. These methods tend to give the best results in cases where f t � varies smoothly,
without sharp changes. If f t � varies rapidly with time, a lower-order method may have a
lower cumulative error.

334 Chapter 20. Speeding Up GENESIS Simulations

Exponential Euler Method

The exponential Euler method (MacGregor 1987) is the default integration method for
GENESIS simulations. The efficiency and accuracy of this method depends on the fact
that typically encountered equations such as Eqs. 2.1 and 4.4 assume the form

dy
dt

� A � By � (20.6)

Although A and B may depend on y and t in very complicated ways, we will see that the
special case where f t � � A � By results in a considerable simplification of the problem to
be solved. For a time step ∆t, we can approximate the solution at a time t � ∆t by

y t � ∆t � � y t � D � A � B � 1 � D � � (20.7)

where we define

D � e � B∆t � (20.8)

This result follows from the fact that there is an exact solution for the differential equa-
tion when A and B are constant. In this case, it may be verified by substitution that we
can express the value of y at a time t2 in terms of its value at an earlier time t1 using the
relationship

y t2 � � y t1 � e � B � t2 � t1 � � A
B
 1 � e � B � t2 � t1 � � � (20.9)

In fact, A and B are usually not constants. However, if we assume that they change
very little between the time t1

� t and t2 � t � ∆t, we may use this result to obtain the
approximate solution given above. Although it is difficult to rigorously analyze the error
introduced by this approximation, simulation results show that it is highly accurate for most
models that contain active channels and only a few compartments. In these cases, it allows
much larger integration steps than the methods discussed so far.

20.3.3 Implicit Methods

The methods used in Eqs. 20.3, 20.5 and 20.7 are called explicit methods because the new
values are given explicitly in terms of functions of the old values.

Backward Euler Method

The backward Euler method is an example of an implicit method. In this case we use

y t � ∆t � � y t � � f t � ∆t � ∆t � (20.10)

20.3. Numerical Methods Used in GENESIS 335

For implicit methods, the right-hand side of the equation involves a function of the new
value of y, which has yet to be determined. Thus, Eq. 20.10 gives an implicit definition
of y t � ∆t � , rather than an explicit expression that can be evaluated. This means that we
need some additional method to solve the equations that arise at each step. It would seem
that there would be no point in using such an implicit method. From a Taylor’s series
expansion, you should be able to verify that the truncation error in Eq. 20.10 is the same
as that of Eq. 20.3, but is of opposite sign. However, we will see that the use of implicit
methods can lead to a much lower cumulative error under certain conditions.

Crank-Nicholson Method

In addition to the backward Euler method, GENESIS allows the use of another implicit
method, the Crank-Nicholson method. This method is based upon the trapezoidal rule of
numerical integration. It uses an average of the forward and backward Euler methods in
order to achieve a partial cancellation of errors. This occurs because the neglected second
derivative terms are equal and opposite in the two approximations. The approximation is
then

y t � ∆t � � y t � � f t � � f t � ∆t ��� ∆t � 2 � (20.11)

20.3.4 Instability and Stiffness

Some coupled differential equations present particular problems when they are solved by
stepwise numerical integration. For example, the exact solution to the differential equation
may have a well-behaved slowly varying solution y t � � g t � , which we would expect to
be able to obtain with a reasonably large step size. However, the difference equation that
is used to approximate the differential equation may have another solution of the form
y t � � g t � � Cexp Bt � , where B has a large magnitude. The initial conditions are such
that C � 0, so we would expect the difference equation to give the same result. However,
as a result of the finite step size, truncation error will cause small errors in the computed
solution that have the effect of modifying the initial conditions so that C is not exactly zero.
The only way to ensure that this rapidly varying spurious solution remains negligibly small
is to use a very small time step in order to minimize the error in its computation. Thus, we
are forced to use a time step that is appropriate for a time scale much shorter than that of
the actual solution. Examples showing how this type of instability may arise are given by
Acton (1970) and by Press, Flannery, Teukolsky and Vetterling (1986).

This sort of behavior leads to the definition of a stiff differential equation as one whose
solution contains a wide range of characteristic time scales. It turns out that the coupled sets
of equations used in compartmental modeling often possess this type of stiffness. Unless
a very small time step is used, this can lead to numerical instabilities, resulting in wild

336 Chapter 20. Speeding Up GENESIS Simulations

oscillations in the computed solution. For example, the equations describing compartments
become stiff when you use compartments with a small size (e.g., in dendritic spines) and/or
inject large currents. In such cases, if your time step is not small enough, the simulation will
blow up if the current increases beyond a certain threshold (as, for example, during an action
potential). In general, explicit methods are much more prone to this type of instability than
implicit methods.

As we have seen in Chapter 5, a uniform passive cable composed of identical compart-
ments of length l and diameter d is described by the more specific form of Eq. 2.1,

CM
dVi

dt
� d

4RA

Vi � 1 � 2Vi � Vi � 1

l2 �
Vi

RM
� (20.12)

(Here, we have taken Eq. 5.28 in the absence of channel currents, and have used Eqs. 5.4–
5.6 to express it in terms of the specific membrane capacitance and resistance and the spe-
cific axial resistance, CM, RM and RA, respectively.) Mascagni (1989) has analyzed the
solution to this equation using the forward Euler, backward Euler, and Crank-Nicholson
methods. When the forward Euler method is used, the solution is numerically unstable for
∆t � 2RACMl2 � d. Thus, instability can be a problem for compartments that have a small
length l, unless the step size ∆t is very small. However, the backward Euler method is sta-
ble for any value of ∆t. Of course, numerical accuracy will suffer if ∆t is too large, but the
solution will not display the catastrophic instability produced by the forward Euler method.

As the Crank-Nicholson method involves an average of the forward and backward meth-
ods, one might expect it to be less stable than the backward Euler method. Although the
analysis shows that it is also stable for any value of ∆t, simulation results show that it
comes closer to the point of instability. Numerical solutions for stiff equations obtained with
the Crank-Nicholson method often show spurious damped oscillations or over/undershoot
when large values of ∆t are used. Nevertheless, its greater accuracy per step (smaller trun-
cation error) coupled with its moderately good stability make it a good choice for high
precision calculations if the time step is sufficiently small.

Although it is an explicit method, the default exponential Euler method does not suffer
the dramatic onset of instability shown by the forward Euler method (see Exercise 2). In-
terestingly, as you may verify in Exercise 3, it is nevertheless not as accurate as the forward
Euler method with the same step size when there are many small compartments. Although
it gives fairly accurate results for integration of the channel conductance equations, and
is a good choice for simple cell models with few compartments, it will require a much
smaller time step than the backward Euler or Crank-Nicholson methods if the equation to
be solved is stiff. The lesson to be learned from this analysis is that you should choose a
numerical method that is appropriate for the simulation to be performed, and should always
experiment with different values of the integration step size before trusting your results.

20.4. The setmethod Command 337

20.3.5 Implementation of the Implicit Methods

So far we have neglected the question of how one implements an implicit method. The
right-hand sides of Eqs. 20.10 and 20.11 involve functions that depend on the unknown
quantity on the left-hand side. In general, we would have to use iterative methods, such as
predictor-corrector or Newton’s methods (Acton 1970) in order to find the solution.

Equation 20.12 and its more general form Eq. 2.1 each have the convenient property
that the right-hand side of the equation involves the unknown membrane potential in the
compartment and that in the immediately adjacent compartments. Thus, the matrix that
represents the coupled sets of equations to be solved is a tridiagonal matrix — a sparse
matrix with non-zero elements along the diagonal and just above and below the diagonal.
This greatly simplifies the problem of solving the matrix equation. A method due to Hines
(1984) provides a very efficient way to solve these equations when the coupled equations
describe a branching tree-like structure (such as the dendrites of a neuron) without closed
loops. In GENESIS, the Hines method is embodied in a special object hsolve which is used
in conjunction with the backward Euler and Crank-Nicholson methods.

20.4 The setmethod Command

The setmethod command is used to specify the numerical integration method to be used in
a GENESIS simulation. It takes an optional argument to specify the path to the elements
to which the method will apply, followed by an integer identifying the integration method
to use. If the path is omitted, the specified method will be applied to all currently existing
elements in the simulation. (Any subsequently created elements will use the default method,
however.) For example,

� � � � � �����	� �

will cause method 2 (the second order Adams-Bashforth method) to be used for all elements
in the simulation. If this command is followed by

� � � � � �����	����� �����	�
method 0 (exponential Euler) will be used for all elements in the /cell element tree, and
the rest of the simulation elements will be treated as before. Just as the useclock and set-
clock commands let us pick an integration step that is appropriate to particular simulation
elements, we can use setmethod in this way to choose the most appropriate integration
method. Table 20.1 gives the integers that correspond to the currently implemented GEN-
ESIS integration methods. The two implicit methods, methods 10 and 11, must be used in
conjunction with an hsolve object, as described in the next section.

338 Chapter 20. Speeding Up GENESIS Simulations

Method number Description
-1 Forward Euler
0 Exponential Euler (default)
2 Adams-Bashforth 2nd-order
3 Adams-Bashforth 3rd-order
4 Adams-Bashforth 4th-order
5 Adams-Bashforth 5th-order

10 Backward Euler
11 Crank-Nicholson

Table 20.1 Presently available GENESIS numerical integration methods.

20.5 Using the hsolve Object

The hsolve method and its associated GENESIS object implement the Hines method of
solving the equations for branched neuronal structures. By using hsolve with the backward
Euler or Crank-Nicholson integration method, you will be able to use much larger inte-
gration steps in simulations of multi-compartmental models. In addition, the hsolve object
provides a highly optimized code besides the use of the Hines implicit integration schemes.
Even with the same size integration step, the hsolve method results in a speedup of at least
50% over the usual exponential Euler method.

However, this greater speed comes at a price. The matrix methods that are used to
solve the coupled differential equations are incompatible with the object-oriented nature of
GENESIS, in which elements communicate only by the exchange of messages. In order to
carry out the solution, we create an hsolve element that takes over the calculations which
are performed by a cell or other tree of linked compartments. The entire cell then acts as
a single object, since the individual compartments within the cell are no longer responsible
for their own computations. However, this is done in such a way as to preserve the illusion
of object orientedness. Within certain limits, you may continue to set element fields and
create and delete messages between objects. The action of the hsolve object on the sim-
ulation elements has been compared to one of those 1950’s science fiction films in which
alien beings have taken over your friends. Outwardly, they seem normal. Only occasional
departures from normal behavior reveal that something very different is in control (Bhalla
1990).

In order to make the hsolve method as efficient as possible, only a few of the GENESIS
objects can be taken over by hsolve. These are the ones that typically account for the
greatest computational load in a simulation, and are most likely to lead to numerically
stiff equations. At present, the objects that are supported by hsolve are the compartment,
tabchannel, tab2Dchannel, tabcurrent, synchan, spikegen, Ca concen, nernst, ghk,
difshell, fixbuffer and difbuffer objects. Other types of elements continue to be treated as

20.5. Using the hsolve Object 339

they were before the hsolve element took over the cell.
The Hines algorithm is only applicable to branched structures that do not form closed

loops of interactions between their elements. This prevents it from being applied to gap
junctions (Sec. 19.6). This also means that the method should be applied to individual
cells in a network, but not to the network as a whole, unless the network has no loops of
interactions.

Because of these various restrictions and the loss of flexibility in setting fields and
changing messages, we suggest that you first build and test your model using the default
exponential Euler method. Once it is working properly and is unlikely to be changed, you
may add the statements necessary to implement the hsolve method.

Future releases of GENESIS will provide a readsolve command. This command reads
the same files as the readcell command and creates the corresponding hsolve element, with-
out creating the other elements in the cell tree. As a consequence it uses less memory than
the standard way of invoking hsolve, but the special findsolvefield function must be used to
output simulation values.

20.5.1 Modes of Operation

The hsolve object has various modes of operation, referred to as comptmodes, chanmodes,
calcmodes and storemodes. The comptmode field is a flag that determines the way compart-
ment computations will be performed. For best performance, this field should be set to 1
(the default). This, however, increases memory use significantly. If you run out of memory,
try setting comptmode to zero before setting up the hsolve element.

The chanmode field controls channel computations. At present, there are four chan-
modes available in GENESIS, labeled with the integers 0 through 4. After an element is
created from the hsolve object, the mode to be used is selected by setting the chanmode field
in the element. In general, the higher mode numbers are faster, but place more restrictions
on your ability to modify the simulation. All of the modes have the same accuracy, and thus
allow you to use comparable time steps. In general, these will be an order of magnitude
larger than the maximum step size allowable for the default exponential Euler method.

chanmode 0

This is the default mode of operation. Although it uses the least amount of memory, it is
also the slowest. To implement the Hines method, it takes over the actions of compartments
only, computing all other object types as before. As a consequence, all computed fields
of the original elements are updated, and all user-setable fields may be set, just as before
the element was taken over by the hsolve element. This means that you can add and delete
outgoing messages to compartments or other elements whenever you like and easily change
parameters during the course of the simulation.

340 Chapter 20. Speeding Up GENESIS Simulations

One significant limitation is that you cannot add or delete AXIAL, RAXIAL or CHAN-
NEL messages once the hsolve element has been created. If you can live with these limita-
tions, chanmode 0 is the easiest one to use. It is also the most compatible mode of operation,
and is guaranteed to work with any future new object type.

chanmode 1

This chanmode uses optimizations for the computation of tabchannel current to the hsolve
computations. It has the same limitations as chanmode 0, but achieves a large increase in
computation at the cost of increased memory use. This is the preferred chanmode if you
employ tabchannels in your model and do not want to use chanmodes 2 through 4.

chanmode 2

The chanmodes 2 through 4 achieve a significant speedup at the expense of greatly increased
memory usage. Under these modes, the original elements describing channels, concentra-
tions, etc. are not used at all. Instead, all simulation parameters are stored in a huge array,
called the chip-array. This reorganization optimizes the speed of the use of CPU cache
memory. If your computer has limited memory and is forced to perform increased swap-
ping to disk after changing to chanmode 2, this may negate the speed advantage. These
chanmodes also assume that comptmode is set to 1 and will change the comptmode field if
necessary. As a consequence of the use of the chip-array, the element tree of your cell (or
other element tree to be taken over by hsolve) must not contain any non-hsolvable elements
when these chanmodes are used. However, within the limitations described below, mes-
sages may be exchanged with non-hsolvable elements that lie outside the hsolved element
tree.

chanmodes 2 through 4 require integer exponents for tabchannel and tab2Dchannel
gate variables. In addition, the maximum exponent allowed is 6. Incoming and outgoing
messages from the disabled elements are supported, providing that they are established
before setting up the hsolve element. If you try to add new messages afterwards, they will
go to the old disabled elements only, and will be ignored. Likewise, using deletemsg to
remove an existing message after the set up will have no effect.

Under these modes, you can no longer assume that all the fields of the elements that
are taken over by hsolve will be updated. This will make it harder to display these fields
graphically, or to output their values to a file. However, the Vm field of all compartments
will be automatically updated when using chanmode 2. Any new outgoing messages to non-
hsolved elements are from the original objects. Thus, whether the message works depends
on whether their fields get updated. You can always establish a new outgoing message,
but it may not give current information. You can prevent this problem from occurring by
using the hsolve element itself as the source of outgoing messages, using the findsolvefield

20.5. Using the hsolve Object 341

function.
Another consequence of this “takeover” is that setfield commands will be ignored un-

til you perform a reset. The GENESIS Reference Manual describes how this restriction
may be overcome with the hsolve object’s HPUT and HRESTORE actions or by using the
findsolvefield function.

chanmode 3

This mode is very much like chanmode 2, except that elements are automatically updated if
they had outgoing messages to non-hsolved objects prior to the setup. This means that you
can plot or otherwise access fields other than Vm, but the Vm is not automatically updated
as in chanmode 2. On the other hand, if any new messages are added after setup, the old
values are sent. Note also that several fields (e.g., Gk, Ik, Ek and Im) are not available for
output in chanmode 3, so you have to use chanmode 4 if you want to output these fields

Mode 3 offers a little more efficiency because it allows you to specify the clock that is
used to update fields in the original elements. This means that if you want to send the value
of a field to a graph with a PLOT message, the element fields can be updated at a slower
rate than the one used by the simulation clock. Of course, the elements that have been
taken over by hsolve will exchange messages at the faster rate specified by the simulation
clock. The update clock is specified by setting the outclock field of the hsolve element. For
example,

� � � � ��� � �

 ����� �	���
� � �	��
 ��� ��� � ��� ��� � ���� � ��� � � �	� � �

� � � � ��� � � ����������� � � � ����� � ����� � ����� �����

Note that if you want to output Vm only, but from multiple compartments, or to create and
delete plots of Vm, you should use chanmode 2.

chanmode 4

This mode is identical to chanmode 3, but allows you to output additional fields at the cost
of a reduction in computation speed. In chanmodes 2 and 3, the hsolve element “forgets”
values like Ek and does not compute values like Ik and Im because they are not needed
during the present or next integration step. As a consequence, the Ek and Ik fields of a
disabled channel element cannot be updated. If you had specified an outgoing SAVE or
PLOT message for one of these fields prior to setup, the output would always be zero. In
chanmode 4 the values of Ek, Ik and Im are computed and stored in a givals-array so that the
proper values will be available for SAVE or PLOT messages, when used with findsolvefield.
Additionally, in chanmode 4 a field leak is available for each compartment, which gives the
leak current flowing through the compartment Rm.

342 Chapter 20. Speeding Up GENESIS Simulations

To give an idea of the effect of comptmodes, chanmodes and calcmodes on computation
speed, we provide a comparison of computation times in seconds for 1000 steps of the
standard 1600 compartment Purkinje cell model of De Schutter and Bower (1994a) on a
HyperSparc platform in Table 20.2.

calcmode 0 calcmode 1
comptmode 0 chanmode 0 n.a. 137.9
comptmode 0 chanmode 1 n.a. 82.8
comptmode 1 chanmode 0 n.a. 139.1
comptmode 1 chanmode 1 n.a. 76.4
comptmode 1 chanmode 2 23.0 24.0
comptmode 1 chanmode 3 21.4 21.8
comptmode 1 chanmode 4 26.9 27.3

Table 20.2 Comparison of computation times (in seconds) for various combinations of chanmodes, compt-
modes and calcmodes. 1000 steps of simulation were performed for a 1600 compartment Purkinje cell.

storemode

With chanmode 4, the storemode field allows the output of total currents and conductances
from a compartmental model. This technique was used extensively by Jaeger, De Schutter
and Bower (1997) to study the role of voltage-gated currents in the control of Purkinje cell
spiking. For each type of voltage-gated channel in the model, the total currents or con-
ductances are the sum of the corresponding Ik or Gk fields for all compartments where the
channel is present. This assumes that these channels have the same name in each compart-
ment. Total currents are computed if storemode is set to 1, and total conductances if it is
set to 2. These are stored in an array called itotal. When the hsolve element is set up, a
message will be output giving a list of channel names and corresponding itotal indices if
the silent command has previously been given with a negative argument. Alternatively, you
may start GENESIS by giving the genesis command with the -silent option and a negative
value.

calcmode

The calcmode field affects operations for chanmodes 2 through 4 only. It is initialized to
1 (LIN INTERP), which is the recommended mode. In the LIN INTERP mode, all values
obtained from lookup tables will be interpolated, ensuring a higher accuracy. The calcmode
exists mainly to provide backward compatibility, as older versions of the hsolve object in
GENESIS versions 2.0 and earlier did not use interpolation, which is equivalent to setting
calcmode to 0 (NO INTERP).

20.6. Setting up hsolve 343

20.5.2 Rules for Table Dimensions

The chanmodes 2 through 4 of the hsolve object also reorganize the lookup tables present
in tabchannel, tab2Dchannel and tabcurrent objects to achieve an extra increase in com-
putation speed. However, this works only if all lookup tables are of the same dimensions.
Specifically, the xdivs field in all tables should be identical and if tab2Dchannels are used,
the ydivs should equal the xdivs. Moreover, all voltage-indexed tables should have identical
xmin and xmax values. The same is true for all concentration-indexed tables. The hsolve
element will alert you during the setup phase if these rules are not obeyed.

In practice, when tab2Dchannels are used in the simulation, all tables will have a few
hundred xdivs instead of a few thousand because otherwise you will rapidly run out of
memory. Because of the small size of the tables it is very important to use the LIN INTERP
calcmode. Obviously, you should not use the TABFILL action on such small tables, but
instead compute every entry of the table.

20.6 Setting up hsolve

The preferred location of the hsolve element is as the root element of the cell. Although
the actual location of the hsolve element within the tree of elements does not matter in
GENESIS 2.1, it will do so in future GENESIS versions. If you want to use chanmodes 2
through 4, you should also organize the tree of elements describing your model properly:

1. The hsolve element should be the root of the cell element tree.

2. The next level of the tree should contain compartments only.

3. All channel, concentration, etc. objects should be children or grandchildren of the
compartment to which they are attached.

4. To make the findsolvefield command behave properly, all grandchildren of a particular
compartment should have different names.

5. The cell element tree should not contain any elements that are not computed by the
hsolve object except for neutral elements.

The hsolve method may be applied by following these steps:

1. Create the hsolve element and name it as you would name the cell using a neutral
object, e.g., /cell. If you plan to use the readcell command to create /cell you should
use the -hsolve option to achieve the same effect:

� �	� � � ����� � ��
 �	���� ���	� ��� ����� � � � ��� � �

344 Chapter 20. Speeding Up GENESIS Simulations

2. If you do not use readcell, create the cell or other structure that is to be treated with
the hsolve element using it as the root element. For example,

��� ��� � � � � ��� � ��� � �����
��� ��� � � � � �	� ���� ���� � � � ��� ��� � � � �
��� ��� � � ��� � � ����������� � � ����� � � � � � ����� � � � ��� � ���
�����

would be used to have an hsolve element called /cell compute the /cell element tree.

3. If your hsolve element is not the root element of the cell, you should set the path to
the elements that will be treated with hsolve. This may be best done using a wildcard
specification such as

� ������
 ����� ��� ����� ��� ��� ��� �������������
	����������� � � ��� ���� � ��� ��	

to set the path field of solve to an expression describing all compartment elements in
the /cell hierarchy. Any subelements of the compartments that are treatable by hsolve
will be taken over by hsolve as well. Thus, it is not necessary to list any tabchannel
or Ca concen elements that are associated with the compartments.

4. If you use a chanmode other than the default chanmode 0, set the chanmode field of
the hsolve element to the mode number. For example,

� ������
 ����� ��� ������� � ��� � �	� ����� � �	�����

5. Then, tell the hsolve element to create all the solution arrays and tables by calling its
SETUP action:

� ��� ��� � ���������������

6. Set the integration method to be used with the setmethod command. For example,

� ��� � ��� � ���
�

will cause the Crank-Nicholson method to be used for all elements that are taken over
by hsolve. The default is the backward Euler method. Those elements that are not
treatable by hsolve will continue to be treated by the method which was previously
in use, usually the default exponential Euler method.

20.6. Setting up hsolve 345

7. Finally, it is essential to call reset after setting up an hsolver, so that the process list
gets updated.

� � � ���

Now you are ready to try running the simulation, starting with the original step size
and decreasing it until errors begin to creep in. Often, the hsolve method will allow you to
use time steps that are an order of magnitude larger than those required for the exponential
Euler method.

Sometimes you may need to modify certain element fields or messages during the
course of the simulation. If the chanmode you are using does not allow this, the easiest
solution is to delete the hsolve element, make the changes, and then recreate the element by
repeating the steps given above.

20.6.1 The findsolvefield Function

The findsolvefield function is used together with chanmodes 2 through 4 to access the hsolve
arrays directly to output field values instead of having to use the old disabled elements. For
example, to output the Gk field of Na channel from the hsolve element /cell:

�������������	����
������
��������	��������������������� �����	��!��	�
������"#��$ ���%�	���������	�!��	� &��������� '(��*)��+���	�%,���(��%����-�����	�������%�	�������%�."/�	��0	�	���21���)�)����43��5
�������������

The findsolvefield function returns a string containing the hsolve field corresponding to
the disabled element field. The syntax of findsolvefield is:

��
 ��� � ���� � ��
 ����� � � ��� � � ����� � ��� ����� � ��� ��
 �����
The findsolvefield function is always safe to use for output. Of course, whether you can

output a particular field will depend on the chanmode used. The findsolvefield function will
alert you if the field is not available. In general, it is not advisable to use the findsolvefield
function for setfield commands, except in this particular example:

���
 �#6�� � �87 �:9 � � � �	��� �� �
� � �	��
 ��� ��� � ��� � ����
 ��� � ���� ����
 ����� � � ��� ��� � ����� � � � � �
 �#6	� � ��� � � 7	� �+;

It is generally dangerous to use findsolvefield in a setfield command because the hsolve
object modifies many field values before storing them in its arrays.

346 Chapter 20. Speeding Up GENESIS Simulations

20.6.2 The DUPLICATE Action

If you are creating a network of cells, each cell must have its own hsolve element. If the
cells are identical, you can save a great deal of memory by making copies of the original cell
(and attached hsolve element). Then, use the DUPLICATE action for each of the copied
hsolve elements. This conserves memory by allowing many of the tables in the original
hsolve element to be used for the copies. For example, if /cell2 is to be created from /cell,
use

��� � �
 � � ��
 � � ��� � ���	� � �� � ��� ���
 � � ������
 ��� ����� � � ��� � � � �	��� ���	� ���� �
� ����� � � ��� �	� � ����� �
��� ����� � ��� �����������	�+9 ��� ��� ����� �

As we described in Chapter 18, large networks may be created with a for loop, or with
one of the specialized functions such as createmap.

20.7 Experiments with the hsolve Object

This experiment and those in the following exercises reveal some of the advantages and
restrictions of the various chanmodes. There is a bewildering variety of combinations of
chanmodes, other hsolve field settings, and actions that you may call. Performing these
experiments will not only help you to be sure that you understand their documentation, but
it will also reveal any changes that may have occurred in later versions of GENESIS. The
hsolve object is under continuous development, so you should consult the hsolve documen-
tation that accompanies your GENESIS distribution if you intend to use any of the advanced
features of hsolve. It is possible that some of the restrictions described above will have been
removed.

Begin by creating a 20-compartment passive cable. Provide current injection to the first
compartment by setting its inject field and generate plots of the membrane potential in the
first and last compartments. The script for tutorial4.g from Chapter 15 would be a good
starting point, as it has the graphics and control widgets you will need, as well as a function
makecompartment for creating the compartments. The parameters used in this simulation
for the single dendrite compartment will be suitable. The easiest way to create the cable
of linked compartments is to borrow a function from the Cable tutorial, which we used
in Chapter 5. The script addcable.g defines a function make cable that uses a for loop to
construct a cable with a specified number of compartments. Use this function to construct
the cable in place of the two compartment neuron used in tutorial4.g. You will also find it
useful to provide a dialog box for changing the integration step size.

Test your simulation using the default exponential Euler method, without creating an
hsolve element. If you have any doubts that it is behaving properly, compare it with the

20.8. Exercises 347

results of the Cable simulation, using the same parameters. Then set up an hsolve element
and run the simulation using either the backward Euler or Crank-Nicholson method and
chanmode 0. How much larger a time step can you use for the same accuracy?

After verifying that the simulation also works under the other chanmodes, see what
happens if you interactively add new PLOT messages under the various modes. You may
use the INJECT message to provide injection pulses to a compartment by using the function
inject compt from the inputs.g script used in the Cable simulation. If you prefer, you may
provide a constant injection by creating a neutral element, setting its x field to the desired
injection current, and sending it to the compartment with an INJECT message. Do the
various chanmodes behave as described in Sec. 20.5.1?

20.8 Exercises

1. Add a soma with voltage dependent Na and K channels to the cable that you created
in the experiment described above. As you will have to use tabchannels instead of
hh channels with hsolve, create your channels from functions defined in the neu-
rokit/prototypes script mitchan.g, rather than hhchan.g. Describe the results under
the exponential Euler and the Crank-Nicholson methods for various step sizes, and
present some evidence that your simulation is working as expected.

2. Run the Cable simulation from Chapter 5, using a cable of 20 identical compart-
ments, each having a diameter of 2 µm and a length of 100 µm. Select the forward
Euler method from the numerical methods menu and vary the step size �	� in order to
determine the point at which numerical instabilities begin. Take some care to locate
this point fairly precisely. How does this value compare with the value of ∆t pre-
dicted in Sec. 20.3.4? (If you prefer, you may use the simulation that you created in
this tutorial instead. Rather than setting up the hsolve element, use setmethod to set
the method to “ � 1”.)

3. Use the backward Euler method with the cable described in the previous exercise.
Experiment with increasing values of ∆t, until you start noticing slight changes in the
plotted results. Determine the largest value of ∆t that should be used for accurate re-
sults. Then try the forward Euler method, exponential Euler, and the second- through
fourth-order Adams-Bashforth methods. For each one, list the largest value of ∆t that
produces a plot indistinguishable from that produced by the backward Euler method.
What do you conclude about the relative accuracies of these methods when applied
to this problem?

348 Chapter 20. Speeding Up GENESIS Simulations

