
� �������	��
 ��

Large-Scale Simulation Using
Parallel GENESIS

NIGEL H. GODDARD AND GREG HOOD

21.1 Introduction

PGENESIS is a parallel form of GENESIS that enables simulation of very large models.
Simulation models are critical for integration of behavioral data with anatomical and phys-
iological data. Although explanations of behavioral data are possible without resort to
neural simulation models (Chomsky 1957, e.g.), those integrative accounts that make con-
tact with the anatomical and physiological data require large-scale simulation models at
the neural level. The scale of the models required can be seen in theories about the func-
tion of the hippocampus in learning and memory (McClelland and Goddard 1996, Levy
1996). These theories assert that statistical properties of firing rates, synaptic transmission
efficiencies, and connection structures are crucial in explaining information processing in
the hippocampus. The validity of these statistical properties is conditioned on sufficient
sample sizes that cannot hold if the model scales down the real system by more than one
or two orders of magnitude. Even scaling down by two orders of magnitude leaves us with
very large models that, as we shall see, go beyond the capabilities of existing simulation
environments.

Two developing data acquisition methodologies are driving this interest in larger scale
models. Technologies for imaging the nervous system, particularly functional magnetic
resonance imaging (Belliveau, McKinstry, Buchbinder, Weisskoff, Cohen, Vevea, Brady
and Rosen 1991), allow us for the first time to test hypotheses embodied in systems level

349

350 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

models and to relate these models to behavior. Multi-electrode recording devices (Wilson,
McNaughton and Stengel 1992), which are now migrating from the small number of origi-
nating labs to a larger group of users in diverse labs, are already delivering individual spike
data for over one hundred cells simultaneously, allowing modelers to refine hypotheses
about information representations employed in particular systems.

Effective use of a parallel computer for simulation requires that the problem be par-
titioned in such a way as to minimize the overhead associated with communication and
synchronization between processors, while at the same time balancing the amount of work
done by each processor. Overhead is minimized by reducing the communication between
components of the simulation that reside on different processors, and by maximizing the
the extent to which the components of the simulation on different processors can proceed
without synchronizing. There are two characteristics of communication hardware (e.g.,
Ethernet) that are referred to in this chapter. Bandwidth is the effective rate at which data
can be sent over the medium. Latency is the time between the transmission of data by
one processor and their reception by another. Two classes of neural simulations can often
exhibit low overhead:

1. Parameter search. Global optimization algorithms for fitting a parameterized model
to data require that many parameterizations be evaluated. In neural models evaluation
of a particular parameterization is often best achieved by running the model. There
are many optimization algorithms that can be parallelized so that many parameteriza-
tions are evaluated simultaneously, including parallel genetic algorithms (Collins and
Jefferson 1991) and parallel simulated annealing (Azencott 1992). Each parameteri-
zation of the model can be run on a separate processor. The communication costs are
small: the parameters must be transferred on startup, and the fitness value returned
at the end of the evaluation run of the model. Synchronization costs can be very
low because models are run independently. The amount of synchronization required
depends on the particular search strategy, as discussed further in Sec. 21.7.

2. Network models. Network models often exhibit two characteristics that closely
match the underlying hardware of parallel platforms, if we assume a partition of the
model that keeps the compartments of each neuron on a single processor so that the
communication is exclusively in the form of spikes. First, spike rates are low com-
pared with the time step for integration within the cell, thus communication band-
width is low as few spikes need to be communicated on each time step. Second,
axonal delays are typically one or two orders of magnitude greater than the time
step, so that cells need not be simulated in lock step. Simulation time on different
processors can differ as long as every spike is delivered to its destination within the
axonal delay period. These characteristics match those in parallel platforms, in which
bandwidth is often limited and latency is often high.

21.2. Classes of Parallel Platforms 351

In contrast, distributing a simulation of an electrotonically connected model over many
processors will incur much larger overhead. This is because at each time step the processors
must exchange data values and, implicitly, synchronize. There is extensive communication,
and processors must wait for all to finish a time step before they can proceed to the next
step. In this chapter will introduce the use of PGENESIS for the two classes of models enu-
merated above: parameter search and network models. We also discuss hybrid simulations
in which parameter search is performed on a network model that itself runs in parallel.

21.2 Classes of Parallel Platforms

The three major classes of parallel platforms are (1) networks of workstations (NOWs), (2)
symmetric multiprocessors (SMPs) and (3) non-uniform shared memory massively paral-
lel processors (NUMA MPPs). In addition there are hybrid versions of NOW and MPP in
which each node of the machine is itself an SMP. The two most important efficiency ques-
tions when deciding which platform to concentrate on are: how well its communication
characteristics match those needed by the simulation task; and how the architecture scales
up to the number of nodes that the model can use.

As stated before, the important communication characteristics are bandwidth and la-
tency, and of these latency is usually more critical for neural models. Low latency and
high bandwidth is the goal. To simplify vastly, NOWs typically have relatively high latency
and low bandwidth. Thus they are suitable for coarse-grained parallel tasks such as a pa-
rameter search task where evaluation of a single individual takes an appreciable amount of
time. They may also be suitable for network models with very long lookahead that may not
be adversely affected by high latency. Other factors to consider with a NOW platform are
whether one has exclusive access to the processors and how much disk traffic the simulation
generates. Without exclusive access, it is very hard to partition a network model efficiently.
NOW platforms are typically not set up well for massive transfers to and from shared disk
for many processors.

SMP platforms (e.g., Origin, Convex, Ultrasparc) have very low latency and high band-
width for small to medium numbers of processors (e.g., up to 16), but these characteristics
do not scale well to a high degree of parallelism because the underlying hardware commu-
nication medium — a shared bus — does not scale. Nevertheless they can be very effective
for development of small to medium scale PGENESIS models and are often easier to use
than MPPs or NOWs.

NUMA MPP machines (e.g., Cray T3E) are the ideal platform for the largest, most
highly parallel PGENESIS tasks. The latency and bandwidth characteristics are vastly
better than NOW and approach SMP, and the architecture can scale into the hundreds of
processors on parameter search tasks, and into the tens of processors for well-distributed
network models. These machines are at the high end of high performance computing and

352 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

so are designed to balance processor speed with memory latency and bandwidth and disk
latency and bandwidth. The largest network models will almost certainly require them.
However, the NOW or SMP platforms may be more cost-effective for large-scale parameter
search tasks.

21.3 Parallel Script Development

Script development for PGENESIS is an exercise in parallel programming where many pro-
cesses are running simultaneously. Each process (called a node) is running one instance of
a single parallel script. For modelers familiar with serial programming, including all GEN-
ESIS users, the transition to parallel programming requires some conceptual leaps. For
example, one can no longer assume that because statement B in a script comes after state-
ment A that B will be executed after A. The order depends on which nodes the statements
are executed by, and what synchronization events (e.g., barriers) occur between them.

We have found that PGENESIS simulations are best developed in the following order.

1. For all models, develop and debug the single cell prototypes using serial GENESIS.

2. (a) For network models, decide how the network should be partitioned, i.e., which
GENESIS elements should go on which nodes. It is best to implement the
scripts in a scalable fashion so that the number of nodes can be varied by chang-
ing a run-time parameter.

(b) For parameter search tasks, develop the scripts to run and evaluate a single in-
dividual, and the scripts that control the optimization. The optimization scripts
should be parameterized so that they will run with any number of nodes.

3. First try out your scripts on a single processor — a desktop workstation is often
most convenient for this stage. Make sure that your scripts run correctly using the
minimum number of nodes (a single node, if possible). Also, be sure the scripts will
run in the background, without XODUS or any interactive input.

4. Continue to use the single processor platform, but increase the number of nodes in
the simulation. This will show up errors related to the partitioning of the problem
across more than one node.

5. Run the scripts on a multiprocessor platform with a small number of processors. For
example, a small symmetric multiprocessor or a small number of networked work-
stations. This will show up errors due to assumptions about execution order.

6. Run the full scale simulations on the largest machine you need and have access to. By
this time your scripts should be well-debugged. Typically debugging is difficult on

21.4. Script Language Programming Model 353

the largest platforms, so it is prudent to do as much debugging as possible on smaller
machines.

21.4 Script Language Programming Model

A PGENESIS simulation consists of a set of independent processes (nodes) that can com-
municate via script language commands and can cooperate in a simulation via GENESIS
messages between elements residing on different nodes. Serial GENESIS forms the core of
each of these processes. As in serial GENESIS, execution of a simulation including setup
and stepping, is controlled by scripts. Use of XODUS is discussed in Sec. 21.8. However,
script programming for PGENESIS introduces additional complexities. It is critical that a
user of PGENESIS review and understand these issues before attempting to run PGENE-
SIS.

21.4.1 Parallel Virtual Machine

PGENESIS is built on top of the Parallel Virtual Machine (PVM) software system (Geist,
Beguelin, Dongarra, Jiang, Manchek and Sunderam 1994), which provides the illusion of a
parallel platform. The PVM system may run on a single CPU or multiple CPUs, possibly of
different types. In the rest of this chapter, when we refer to the “parallel platform” we mean
the illusion provided by PVM. When we refer to the “parallel machine,” we mean the phys-
ical set of CPUs and the network connecting them on which PVM is running. An executing
PVM program consists of user processes, typically one per CPU, which communicate via
the PVM daemon that runs on each participating CPU. In PGENESIS, each user process
is an independent GENESIS simulation, which we call a node of the parallel simulation.
Nodes are uniquely identified by a node number (consecutive integers starting at zero).
These nodes may be grouped into zones — nodes within a zone have their simulation time
kept more or less synchronized, whereas simulations in different zones may run relatively
independently. Thus, a parameter search algorithm would typically run many simulations
independently with each node in a separate zone, whereas a large network model would
typically run with all nodes in a single zone.

21.4.2 Namespace

PGENESIS currently provides a private-namespace programming model. This means that
each node has no knowledge of the elements that reside on other nodes. This implies that
every reference to an element on another node must specify the node explicitly. It is envi-
sioned that a shared-namespace programming model will be implemented eventually. This
will allow nodes within a zone to reference elements on other nodes in the zone without
specifying the node number. To ease upgrade of parallel models to the shared-namespace

354 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

paradigm, it is recommended that element names within a zone be unique. If this rec-
ommendation is not adhered to, there will be naming conflicts if a model wishes to take
advantage of the shared-namespace capability when it becomes available.

21.4.3 Execution (Threads and Synchronization)

The main thread (i.e., flow of control) on each node is that which reads commands from the
script file (or keyboard, if the session is interactive). PGENESIS provides limited capabili-
ties for this thread to create new threads on any node. On each node, the threads are pushed
onto a stack with the main thread at the bottom of the stack. Only the topmost thread may
execute, and when it completes it is popped off the stack so that the next thread down can
continue. Threads ready to execute are not guaranteed to execute: if the topmost thread is
blocked or looping, no ready thread lower on the stack can continue.

An executing thread is guaranteed to run to completion (assuming it does not contain
an infinite loop or block on I/O) as long as it executes only local operations, i.e., no opera-
tions that explicitly or implicitly involve communication with other nodes. The command
descriptions below include specification of local or non-local status. In addition, simulation
steps and reset are by definition non-local operations if there is more than one node in the
zone. Users are strongly encouraged to use only local operations in child threads whenever
possible. Users need to be very careful about thread creation to ensure that deadlock (when
no thread can continue) does not occur.

PGENESIS provides facilities for blocking and non-blocking thread creation, usually
used to execute commands on nodes different from the one on which the script is being
executed. (“remote” nodes). When a thread (including the main script) initiates a blocking
remote thread (also known as a remote function call), it waits until the thread completes
before continuing. When a thread initiates a non-blocking remote thread (an asynchronous
thread), it continues immediately without waiting for termination of the thread. While a
thread is waiting, the node can accept a request for thread creation arriving from any node
(including itself). This new thread is pushed on the thread stack and executed, so that the
original waiting thread does not continue until the new thread has completed.

Scripts running on different nodes can synchronize via several different synchronization
primitives. The simplest, a barrier, causes every node to wait at the barrier statement until
all other nodes have reached that point in the script. There are two types of barriers, one
that involves all nodes in a zone, the other involving all nodes in the parallel platform. By
default there is an implicit zone-wide barrier before a simulation step is executed, although
this can be disabled.

When a script requests that a command be run asynchronously on another node, it initi-
ates a child thread of control on the other node. The child thread runs asynchronously with
its parent. The parent can request notification or the child’s result when the child completes,
and can wait on that notification or result (a “future”), and this is the only way to ensure

21.4. Script Language Programming Model 355

asynchronous child threads have completed. Threads do not block for child completion
before each simulation step, nor at a barrier. It is easy to reach deadlock if the creation and
execution of threads are handled carelessly.

If a node initiates several child threads on a particular remote node, these are guaranteed
to commence (but not necessarily complete) execution in the order in which they were initi-
ated. A thread is guaranteed to execute eventually as long as no preceding thread (1) enters
a loop that only executes local operations, or (2) blocks indefinitely because of deadlock.
Once execution of a thread begins, it runs to completion without interruption as long as it
only executes local operations.

21.4.4 Simulation and Scheduling

PGENESIS provides the ability to set up a GENESIS message between two elements on
different nodes (a remote message), provided the nodes are in the same zone. Data are
physically transferred from one node to the next at the beginning of a simulation step. This
means that there is no transfer of data between elements on different nodes within a single
time step, which has ramifications for the schedule. (The GENESIS Reference Manual
contains a description of simulation schedules.) PGENESIS guarantees that execution on
a parallel platform will be identical to that on a single processor if and only if there are no
remote messages for which the source object precedes the destination object in the schedule.
(We assume that every node in a zone has the same schedule.)

21.4.5 Node-Specific Script Processing

Each node executes a single main script common to all nodes. However, it is common to
need node-specific script processing. A node is assigned a unique identification which is
available to the script it is processing via the mynode and myzone commands. If execution
of script statements is conditional on the node ID, then different nodes can execute different
scripts. For example, if the main script (henceforth, main.g) executed by all nodes contains
this script fragment.

���������
	���������������
���������
����� ���������������! �"

� �$#��&%����'�������� (�*)
���
���

� �$#��&%����'��������+,�*)
���
�
�����
���
	���������������
���������

356 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

then each node 0 will execute early-statements, followed by statements in script node0.g,
followed by later-statements. All other nodes will execute early-statements, followed by
statements in script nodex.g, followed by later-statements.

21.4.6 Asynchronous Simulation

The PGENESIS nodes usually operate asynchronously, so instantaneous position in a script
varies between nodes. In the preceding script fragment, one node still could be executing
early-statements while another is already executing later-statements. This means, for ex-
ample, that one node may have completed element creation and be adding messages while
another node is still creating elements. If the first node tries to send a message to an element
on the second node, it may find that the target element has not been created. Modelers can
control this behavior through the judicious use of barriers. A barrier is a script statement
that must be executed by all nodes before any node can continue past the barrier state-
ment. For example, the following main script fragment will guard against the problem of
attempting to send a message to an element not yet created:

#&������������������ �&�
� � � ����) ��� ����)�� � ����� "
� ����� � ���
#&����������� � ��������)���� � ����)�� � ����)
	 � ����� "

In this main script fragment, each node creates the required elements, then waits at the
barrier statement. Only when all nodes have reached the barrier, and therefore created their
elements, can any node continue on to create messages.

Some script commands result in implicit synchronization events. For example, by de-
fault, the nodes synchronize before executing a simulation step. The reset command also
causes the nodes to synchronize.

21.4.7 Zones and Node Identifiers

Nodes can be grouped in zones when the simulation is started. Each node is in exactly one
zone (by default, every node is in its own zone). The zones form a fixed partition of the
parallel platform. The motivation for using zones is to allow different parts of the simula-
tion to run asynchronously (uncoordinated) even during simulation steps. For example, in
a parameter search application, one might wish to run many instances of a four-node model
in parallel. Each instance uses four nodes that must run synchronously, but the instances
need not be coordinated (except at start and finish). Thus, we can run each instance in a
separate zone, each zone containing four nodes. Zones are uniquely identified by consecu-
tive integers starting at zero. The nodes within a zone are uniquely identified with a node
number (consecutive integers starting at zero).

21.4. Script Language Programming Model 357

Node identifiers are of the form “� ��� ” where � is the number of the node within zone
� . Node identifiers are used in commands that expect an element path which may be on a
remote node (e.g., raddmsg in Sec. 21.4.10) and in remote function calls (see Sec. 21.4.8).
The zone specification “ ��� ” can be omitted, in which case the zone of the node executing
the script is assumed. In network models there is often only a single zone, so that the zone
specification can be omitted everywhere. In optimization tasks there is typically only one
node in each zone, so that nodes are referred to with “ (� � ”.

A script accesses the node number and zone number of the node on which it is running
with the mynode and myzone commands. For example:

��#������ �� �������	�������������
 � �����&���� ������������

will print the node and zone numbers on which the script is running.

21.4.8 Remote Function Call

A script running on a node can execute a function or command on another node simply by
appending “ � ��� ” to the command, where ID is the identification string for the node. We
refer to the node on which the script is running as the issuing node, and the remote node on
which the function or command is executed as the executing node for the remote function
call. For example, if node 3 in zone 1 executes the remote function call:

��#���� � ���������� � ����� �������	� ������������
 � �����&���	�������������

then the issuing node is node 3 in zone 1, and the executing node is node 0 in the same zone
as the issuer (i.e., zone 1). This command will cause “ ��#�������������� � �
��!������� � � �
���&��� �

” to be executed on node 0 of zone 1. Notice that the evaluation of the commands
mynode and myzone is performed on the issuing node, not the executing node. Argument
evaluations are always performed on the issuing node.

Two special keywords can be used with the � operator: all means all nodes or all zones,
depending on context; others means all other nodes or zones, depending on context. Here
are some examples of how they can be used:

����� ��� ����� ��� ��
� � ���
����� ������� � � �������������
� %��$# � ����� � ����� ��� #������ � %�� # ��� ��������� ������� � � ���
������������
� %��$# � �(�*����������� ��� #������ � %�� # ���!������� � � � ������������������
� %��$# � ����� � � ��� #������ � %�� # ��� ��������� ������� � ��������� �

In addition, node identifiers can be composed into a list separated by commas. For
example
� %��$# � � � � ��� ��� #������ � %�� # ���!��������� � � � �&�
� �

358 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

This is used in the network model in Sec. 21.6.
The remote function call examples shown in this subsection are synchronous. The is-

suing node suspends execution of the script containing the remote function call statement
until the executing node has completed the function call and returned the result. This is
shown schematically in Fig. 21.1. In this figure we also show the execution of the script
on node 1 as a solid line. Conceptually, there are just two threads of control active at any
time. During the execution of the remote function call on node 1, both threads reside on
node 1. In PGENESIS there is exactly one thread of control per node, as long as the async
command is not executed, but by using remote function calls, some nodes may have no
threads resident, and other nodes may have more than one resident thread.

PGENESIS users should be aware that the threads of control are not full, independent
threads, able to suspend and resume arbitrarily. They are implemented in a stack-based
system so that only the thread at the top of the stack can execute. When it completes it is
popped off the stack and the preceding thread resumes. (It may immediately suspend again,
but it is given the chance to resume.)

echo@1 hello
node 0

node 1
echo hello

Figure 21.1 Synchronous Remote Function Call. Node 0 issues the command “ ��� ����� ���	� � ” to node 1, and
suspends. When node 1 has executed the command and returned the result to node 0, node 0 continues.

21.4.9 Asynchronous Remote Function Call

It is also possible for a node to issue a remote function call asynchronously using the async
command. We recommend that only experienced users of PGENESIS use this command.
A simple example is:

������$#'��#���� � � ���������

In this case, the issuing node sends off the request for the command to be done to the
executing node (1 in this example) and continues processing its script without waiting for
the executing node to complete (or even start) the command. This is shown schematically in
Fig. 21.2. Notice that after the remote function call has been issued by node 0, and until the
result is received, there are three separate threads of execution: the parent on node 0 which
continues; the child on node 1 which executes concurrently with the parent; and the original
thread on node 1. Every use of the async command introduces one or more additional
threads of control beyond the initial single thread per node with which PGENESIS starts.

21.4. Script Language Programming Model 359

async echo@1 hello
node 0

node 1
echo hello

Figure 21.2 Asynchronous Remote Function Call. Node 0 issues the command “ ��� ��� � ���	� � ” to node 1,
and continues executing. When node 1 has executed the command it returns the result to node 0, which does
not use it.

f={async echo@1 hello}
node 0

node 1

waiton f

echo hello

Figure 21.3 Completing an Asynchronous Operation. “ ��� ��� � ��� � � ” to node 1, and continues executing.
When node 1 has executed the command it returns the result to node 0, which does not use it.

Every asynchronous operation issued from a node returns a result to the issuing node
upon completion. A script can issue an asynchronous command, do some further process-
ing, and then wait for the command to complete:

� ��� � %
��%
���
� %���%
����� ���
�����$#!���� ��	 � %��$#�� � �&� � � ����)��������

���� ��	�% �&� � %���	 � %�� #&� � ��� ����)��������

� � � �
�&� � %���%��
�

The execution diagram for this script fragment is shown in Fig. 21.3.
The future variable is a handle returned by the async command that is passed to the

waiton command. The script then suspends until the asynchronous operation completes
(the future is satisfied). This “join” operation results in a reduction in the number of threads
of control. The number of threads that terminate is exactly the same as the number of
threads that were created by issuing the asynchronous operation.

A special form of the waiton command allows a node to wait for all its outstanding
asynchronous operations to complete:

� � � �
�&� �����

This form of the waiton command reduces the number of threads of control that originated
on the current node to exactly one. If every node executes this command followed by a
barrier, then there will be exactly one thread of control per node when the barrier is satisfied.

360 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

21.4.10 Message Creation

For connecting elements that reside on the same node, the usual GENESIS commands (ad-
dmsg and volumeconnect) are available. However, PGENESIS also supports the creation of
messages between elements that reside on different nodes. raddmsg allows one to create a
message between an element on the node where the raddmsg is executed (the “local” node)
and an element on another node (the “remote” node). For example, to create a PLOT mes-
sage from /cell/soma on node 1 to a graph on node 0, the following should be executed on
node 1.

�������&� �&)	��#��������
����$� ���
������� �
��������)�� � ��������	����
 �
����� ��
&�
���

One can also create this message from node 0 by using the remote procedure call mecha-
nism:

�������&� �&) � � ��#��������
����$� ���
������� �
��������)�� � ������������
 �
����� ��
��
���

There is also an rvolumeconnect command (analogous to volumeconnect) that is illustrated
in the network example in this chapter (Sec. 21.6). It is currently not possible to delete
remote messages.

21.5 Running PGENESIS

To run PGENESIS, you should first make sure that it has been installed, following the direc-
tions in the distribution. If PGENESIS was not included with your GENESIS distribution,
you may obtain it from the PGENESIS web site (Goddard and Hood 1996), along with the
latest version of the documentation.

We start with one of the simplest PGENESIS scripts — a parallel version of the classic
“hello, world” program. We’ll examine this script line by line, adding some line numbers
that aren’t present in the actual script:

� � ���
��� 	���������� �!	 � �������������
� ��#���� � ���������� � �
��!�������	� ������������

� � ����� � ���
	 � ���
� ���� ��% � �

1. � ���
��� 	���������� �!	 � ������������� tells PGENESIS to initialize the parallel capability
running 3 nodes in total, in the synchronized form (i.e., all in a single zone). PGEN-
ESIS will start up two more nodes executing the same script.

2. ��#���� � ���������� � �
��!��������� ������������� tells the node to issue an echo command to
node 0 which prints the issuing node number.

21.5. Running PGENESIS 361

3.
� ����� � ��� causes all nodes to wait until the barrier is reached. The purpose of this
barrier is to make node 0, which in this script is reporting which nodes are running,
wait until all the nodes have had their echo command printed.

4. � ���
� ��� causes each node to flush its standard output and standard error buffers (so
that output is written out) and then enter a barrier. Thus, by the time this command
completes, all nodes will have flushed their buffers.

5. ��% � � exits to the UNIX prompt.

In summary, the effect of this script is that output similar to the following will appear
on node 0.

��������� � �
�� �������
��������� � �
�� ������� �
��������� � �
�� ������� �

Because of the parallel nature of the code, the particular order of these messages is not
deterministic, and so you may sometimes find, for example, that node 1’s message appears
first.

21.5.1 The pgenesis Startup Script

PGENESIS is usually run by executing the pgenesis script. This script performs some
checks on the execution environment, starts the PVM daemon on the appropriate machines,
and runs the appropriate initial executable for PGENESIS. To try this out, locate the pgene-
sis script and put it on your PATH. Henceforth we assume that typing “�)�������� � � ” results in
this script being run. Put the “hello, world” script listed above into a file, say, “ ���������(�) ”.
Now you should be able to execute the “hello, world” script with:

�)�������� � � ���������(�*)

The full set of flags for this script is described with the PGENESIS hypertext documen-
tation (Goddard and Hood 1996), which is also included in the PGENESIS distribution. In
addition to the usual flags available for GENESIS, some of those interpreted by PGENESIS
include:

-config filename The specified file should contain a list of hosts to use to run the scripts
(e.g., “ ��+ � !��+ � � ��+ � � ”). Names should be separated by blanks or newlines.

-debug mode Run the workers in their own separate windows to allow debugging at either
the GENESIS script level or at the C code source level. Not all modes are supported
on all platforms. If you specify an unsupported mode the pgenesis shell script will
select an alternative. Valid modes are:

362 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

1. tty — run the workers in individual windows but not under any C debugger.

2. dbx — run the workers in individual windows under the control of dbx.

3. gdb — run the workers in individual windows under the control of gdb running
inside emacs.

-nox Run a version of the PGENESIS executable that does not have the XODUS libraries
loaded — this is smaller, starts up faster, and does not require you to be running X
windows. Note this only applies to the first node. Subsequent nodes are started with
the paron command in the script, which can specify an executable.

-v Run in verbose mode.

-help Print text describing all the flags.

21.5.2 Debug Modes

The tty debug mode supported by the pgenesis script can be useful for debugging parallel
scripts. The other two debug modes, which run PGENESIS nodes under the dbx or gdb
debuggers, are most useful for advanced users who have interfaced their own C code with
GENESIS.

To illustrate the use of the tty mode, and some of the functionality provided by the
PGENESIS extensions to the script language, we will show you how to do some interactive
programming of PGENESIS. This is not the way to develop parallel scripts, but it will give
some insight into PGENESIS, and it can be useful in debugging parallel scripts.

First create a script debug.g containing this single command, which tells PGENESIS to
run with 3 nodes and with the � � ������� level at 0, i.e., so that all the usual banner and error
messages are printed:

� ���
��� 	&��������� � 	�� � ���&�
�! !	 � ���
���������

Now run PGENESIS with:

�)�������� � �'	���� � %�) ����� ��� � %
),�*)

This should start up a node that spawns two new nodes, so that there are three PGENESIS
nodes running. Each of the spawned nodes appears in its own window, and after startup all
nodes show a prompt.

Execute a remote function call from any of the nodes:

��#���� � ����� ��������� � �
�� �������������

21.6. Network Model Example 363

This causes a “hello” message to appear in each node window.
Now try a barrier. Type “

� ����� � ��� ” to the prompt in each of the node windows. Notice
that the prompt does not reappear in any window until the barrier command has been issued
on each node.

Now exit. Type “ ��% � � � ����� ” to any of the prompts. The spawned node windows will
disappear and, after cleaning up, the original node will exit to the UNIX prompt.

21.6 Network Model Example

[If you are not interested in distributing a network model over multiple nodes, this section
may be skipped.]

This section illustrates how the Orient tut example in Chapter 18 can be parallelized.
Recall that that network has an array of retinal cells whose axons make contact with two
populations of V1 cells. In parallelizing a network model, the most critical decision is
how to decompose the network, i.e., how to distribute the cells amongst PGENESIS nodes.
The goal is to minimize the number of synapses crossing node boundaries while maximiz-
ing the axonal delay of those synapses that do cross node boundaries. In Orient tut, the
connectivity is feedforward from the retina to V1 with some spatial divergence. A simple
but effective decomposition is to divide the x-dimension of the retina and V1 populations
amongst processors, as shown in Fig. 21.4.

In explaining this example, we do not provide the full scripts. These reside in the
Scripts directory of the PGENESIS distribution. Instead, we show the important features
of the parallelization, particularly how the simulation is set up and controlled and what is
modified from the serial version described in Chapter 18. Nor do we discuss the issues
involved in generating an XODUS display, which are covered later in Sec. 21.8.

21.6.1 Setup

In setting up the simulation, we will use one node to control the simulation, and the remain-
ing nodes to run the slices of the model. Thus, n slices will require n � 1 nodes. These
will run in a single zone (i.e., stepping is synchronized), with node 0 controlling, and nodes
1 ��������� n (the workers) running the slices. The main global variables used are:

���	�
���	������������� �������������� "!�#$���������
���	�% ����&����'	�(�)
�+*-, ���. ����&����'0/�'��*-,
)1*-,2���	����
���	�% ����&����'	�(�	3
�+*-,
���	�%45*-�6�)"��� ���%��'��-/"75*98�!�8�����'��&�6!6��/�'���
):�2���	���	
���	�%45*-�6�	3"���
���	�:	���;��(���68&<�+*-,�,�, ����=�/����$-=�����8$��0 ���>�����(����?A@B=��.=;�����.?	!C*-,�,�(���68&
���	�$����'-�;����!6�	�� �!	���6��!�?	�D@E����'-�;�(=�!� �F��� ��6��!�?��0���.G�!�!	����'��H
����?H����'��&����I.��/��
#����H�(�&�6!��
���	�:�������� ����=�/�'��2��������.��/;�����!�?	��/�!	��?�

364 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

V1 − Vertical
 (5 x 5)

V1 − Horizontal
 (5 x 5)

Retina (10 x 10)

� �
� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

Node 1

Node 2

Node 3

Node 4

Node 5

Key:

Figure 21.4 Slice decomposition of the retinal and V1 cells onto a set of 5 nodes.

(��
=�!� �F��� H ���%'�����(� !�#.��!�?	���/�!	��?H����I2���������
���	�$� ���2�-���� �'���!�
���	�
���(��!�?	����
���������������1*

The setup part of the controlling script, executed by all nodes, is:

* =�!� �F	�� H<����*	�

 #	!� �� �(�&*� ���������	���������� �-�H���;*��� =�!� �F��� H6��=�!� �F��� H����;@����������� ����?
� 8�'� �!6�� 68�'� �'������	�! 		���������",� 6��!�?	��"�6���6��!�?	����
# ����	#��6�	��?%�(8�!�(�0� (I��6/�'��	I����&� �&�"*-,�,�,�,�,
� ����'-�&����!��	�� �!	���6��!�?�� ������3���!�?	�$����� ,
% ����'-�&�6=�!� �F	�� ��6��!�?	� � ����3���!�?	�$�'&%,
(�'���?������?)� ��3���!�?��+*'��#$($�
, �(#�� ����'-�&����!��	�� �!	���6�	!�?��-�. �������8�����!��	�� �!	�
/ �	����� �(���'��	�	����������	���������	� ���	?

21.6. Network Model Example 365

*-,.��'� � H�6��
�
�(#�� ����'-�&�6=�!� �F	�� ��6��!�?	�-��E�6!��������-���� ����H����'	���	�������� ����?
*

 �������

Again, this listing has added line numbers that are not present in the actual script. This
script creates a string containing the list of worker nodes (lines 1–2), then initializes PGE-
NESIS (line 3) with n nodes nodes. Line 4 sets the timeout to a very large value so that
worker nodes, which wait at a barrier (line 23) will not timeout. Lines 5–6 set Booleans
indicating the function of the node. Recall that every node executes this script and myn-
ode returns the number of the node. Line 7 initializes the random number generator with a
different value for each node, to avoid identical random number sequences on the different
nodes. If the node is the control node, setup control is called to initialize the control process
(line 8). If it is a worker node, the slice cells are created (line 9). The purpose of the barrier
in line 10 is to ensure that all the cells have been created before any node attempts to make
connections (line 11). Although the control node makes no cells, it must participate in the
barrier because a barrier always includes all nodes in a zone. After connections have been
made, all nodes reset (line 12). The remainder of this script fragment (lines 13–24) appears
in the following section on simulation control.

The code to create the cells in slices is only marginally different from that for the serial
version (in Orient tut/retina.g). For example, the retinal slice is created with:

�(���'����-�&'68 �������� �'� �3��6 ���� �� ����&� ��'	�� ����-8���'���� � ����� ���	� �.���	�����������!� ����� ����
-���
 �?��	����')� �	��� �	 �	� �-�!� �	��� �	 �	�
-� �
 �!� &�-I&����� ����� ������* ����� �	 ��� � �)
 ���

���������* ����� �� ��� ��* ����� �������.����������6����!�	 ����� ���	
�* �	��� �	 �	�
"�)
$�

Here, the globals slice and n slices are used to determine how many cells to create
and what their spatial locations are. As described in Sec. 18.6, the createmap commands
perform calculations that create the V1 populations on two-dimensional grids.

The connections from retinal to V1 cells are made with calls to rvolumeconnect. This
command is just like volumeconnect except the destination path indicates on which nodes
to look for the destination elements. Here we specify all the slice nodes. Although we
could compute exactly which nodes should have the appropriate destination cells, it is easier
to just ask PGENESIS to check everywhere. However, this does result in unnecessary
communication between nodes during setup. In this example it is not a significant factor,
but in more complex examples, especially with many nodes, it could be much more efficient
to do this computation in the script. The connections to the V1 horizontal cells, for example,
are made thusly:

 �4�!��6���&���6!��������-�
�� 	���&����'��� ����-8���'������� 	���������	����8������
��75*(�6/�!� &�����	�!-�&'���������)����	-3�� �$�-=�!� �F��� H�� �

366 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

 � ��	��'��&�-4�� �
 ��!��	 ����-�&'�-F0��!�) H*� H*�, * *�, �
 �?	��(�(�&'�(F���!�)��	
�� # *075*(�	 ��� �-�!� �,�� %�*075*(�	 �	�
-�!�	 ���� ,�*�7;*(�	 ����� ���

�+
�� # *075*(�	 ��� �-�!�",�� %�*075*(�	 �	�
-�!�%��� , *�7;*(�	 ����� �

After the connections have been established, we can modify the axonal delays and
synaptic weights with rvolumedelay and rvolumeweight which are analogs of the volumede-
lay and volumeweight commands in GENESIS. For example:

 �4�!��6���&��?��	��'�3
�� ����&� ��'	�� ����-8���'��	�	�� ������ �	������8����! � �'�?��6'	�!� ��� G�� � �67 � � �
 �4�!��6���&��=����-I�/	�.�� ����&����'	�6 ����-8���'����	�(���� ���	������8��	�" �#��-)���?%,��
	

21.6.2 Simulation Control

Lines 13-24 of the main script fragment, continued from above contain the crucial code for
controlling the simulation:

� � �&��� � ���� �
#����
���
���
�&��������"
� 	 �&��� � ����#�� "
� � ��%
�
��� � ��� � ����� � ������������	� � ����� � ����

�
 � ���
� ���� ��% � ��	� �������
�	� �
#���� � ��� %�� #������ �&�
��� � ����������% � � � ����� �
�������&� � �������
�� �&���
� � �����&�
�
� � ����� � ����
 � � � � �
� � � ���
� ���� ��% � �
� 	!�&���

Worker nodes simply sit at a barrier (line 22), ID number 7 (chosen simply for uniqueness),
waiting for commands from the control node for a maximum of 100,000 seconds. If the
simulation is running interactively, the control node prints a message (line 19) and then
the script terminates, returning to the PGENESIS prompt. If the script is running in batch
mode, the control node executes a simulation (line 15), then satisfies the barrier at whcih
the workers are waiting. This allows the workers to continue on and quit (line 23). The
control node similarly quits (line 17).

The function autosweep calculates the parameters for sweeping a bar across the retina
and then steps the simulation on all nodes for the appropriate number of steps, setting the
appropriate input in the retina before each step.

� � %��$#�� � �&� �&%��
��� � ��� �

21.6. Network Model Example 367

� � � � � � � ��� � � ���
�� �
� � ��� � � �! � ��� � � � �
���
� � � � � � ��� � "
	 #��� � %��
�
� � ��� ��#���������� �� ����� ��� ����� � � � ��������� �
����
��� � �������
��# � ���&����������#�� +	� ��+ �
�
�� �	���&� �
�
�� � + � ��+���
�
�� � � ������
�
 � � � � %
� �����
��������
��
�	���� � ��� �����

 ����� � � ������ ���
�
� ���
�

init bar params (line 2) is a script function not shown here that initializes the computa-
tion of the sweeping bar. Prior to each simulation step (line 7), the corners of the bar are
computed with compute bar corners (line 4), not described further. This sets the global
variables x1, y1, x2, y2, which are used in wildcard tests in the setfield command (lines
5–6), which actually sets the input in the retinal cells. Recall that autosweep is only called
on the control node (see line 15 at the beginning of this subsection). It issues the setfield
command for each node, so that all slices of the retina are properly initialized for the step.
Notice the added flag “ 	���� � ��� ��� ”. This flag is an addition to the setfield command which
tells it that it is not an error if no elements match the wildcard specification. In the sliced up
simulation, some nodes may not contain any retinal cells that are inside the spatial extent
of the bar. It is simpler to allow setfield to accept an empty wildcard list of elements than to
compute, for each step, exactly which nodes have relevant retinal cells and which don’t.

21.6.3 Lookahead

In network models, axonal delays are typically one or two orders of magnitude greater than
the simulation time step for processes within a single cell. A spike generated at simulation
time T need not be delivered to a destination cell until time T � L, where L is the axonal
delay. This allows simulation nodes to operate in a loosely synchronized fashion, some
being ahead of others, and it allows nodes to continue updating their cells while incoming
spikes are in transit over the physical medium (e.g., Ethernet) that connects the CPUs. The
amount of simulation time by which node A can get ahead of node B and still be sure it has
not missed any spikes is known as the lookahead of A with respect to B.

In PGENESIS lookahead is controlled with three commands: setlookahead, getlooka-
head and showlookahead. The lookahead of node A with respect to node B is the minimum
delay on all data paths from B to A, i.e., the minimum axonal delay over all the connections
from B to A. If there are no axonal paths from B to A, the lookahead is infinite because
A’s activity does not depend on B’s. If there are non-spike messages, lookahead is dt be-
cause those messages deliver data on the next time step. In addition, PGENESIS must be
instructed to execute steps asynchronously with the command:

����� ��� ������ � ���� ����� # � � � � ����������
� �

368 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

/post is the element that provides access to PGENESIS configuration fields. The variable
sync before step is a Boolean indicating whether PGENESIS should synchronize nodes in
a zone before a simulation step. By default it has value 1, so that nodes synchronize. To use
lookahead, synchronization before stepping must be turned off.

By default, the lookahead is set to the time step, since every PGENESIS node always
delivers spikes on the next time step. To set the minimum lookahead of a node with respect
to all other nodes to 10 msec:

��������������� ������� (�* �

To set the minimum lookahead of a node with respect to, e.g., node 3 to 10 msec:

��������������� ������� �! (� �

To find the lookahead of this node with respect to, e.g., node 4:

)�������������� ������� 	

To view the lookahead of this node with respect to all other nodes:

����� � ��������� �������

It is wise to partition a model in such a way as to maximize lookahead between every pair of
nodes. Techniques for automated partitioning are under investigation, but intelligent choice
of partition by the modeler will remain a critical aspect of efficient simulation for some time
to come.

21.7 Parameter Search Examples

[If you are not interested in parameter search, this section may be skipped.]
As mentioned in Sec. 7.4.1, GENESIS contains objects and commands for performing

automated parameter searches, in order to estimate a set of model parameters that gives
the best fit of the model behavior to the results of experiments. To demonstrate the use
of PGENESIS for parameter estimation, we have constructed an example that performs a
simple genetic search. The search problem in this example is quite trivial — we are trying to
find values of parameters a and b that minimize min ��� a � 1 � ��� b � 1 � ��� a � 1 � ��� b � 1 ��� . This
function has two minima, one at �	� 1 ��� 1 � and one at � 1 � 1 � , so our search procedure should
find one of these. A more realistic parameter search in the neuroscience domain would have
parameters that represent, for example, channel conductance densities in a cell model. The
evaluation of the parameter set would be obtained by first running a neural simulation for,
e.g., 100 milliseconds, and then comparing the simulation results (e.g., voltages or spike

21.7. Parameter Search Examples 369

times) with experimental data, and generating a numerical value to represent the goodness
of the match. However, we have substituted here a simple function evaluation so that we
can more cleanly illustrate a method for doing this type of search using PGENESIS. We go
through the entire script in this section, starting with the high-level design and gradually
refining the implementation in script commands.

In performing the genetic search, we keep a fixed-sized population of individuals “alive.”
We randomly pick an individual from this population and mutate its representation with a
certain probability. We then evaluate the new individual and, if it is better than some other,
we replace the worst-evaluated individual in the population with this new individual. To
allow for parallelism, we evaluate multiple new individuals simultaneously, and only re-
move existing individuals in the population as new individuals with superior evaluations
are found.

In this example, we represent each parameter (out of a total of 2 parameters per individ-
ual) as a 16-bit string. The floating point value that this bit-string represents is determined
by linearly mapping the 16-bit integer with range [0,65535] into the range [� 32 � 768 � 32 � 767].
When constructing a new individual from an old one, we mutate each of the bits with prob-
ability 0.02. We evaluate each individual by computing a trivial function over the parame-
ters. In a real-world parameter search, this step would be the most time-consuming, since it
would involve running a neural simulation. The main PGENESIS script follows, with each
statement numbered.
*98�'� �!�� �#�'� 6� �	�6�����	�",+ 6��!�?���"�6���6��!�?	����" �!��	��8��	�"!�� !����+ ���)������	��'������<�)�8�I����������

"���-/�!	��,0��!�?	� ����3���!���'	�(��!�?	�$��(��'� �����?
�.��'� � &�(�� �'	���
#C�(# � ����3���!���'	�6��!�?	�$� ���", �
� ���'� H��/
%"����?
(.��'� � &�(�� �'	��� (+*-,�,�,�,�,�,
,.8�'� �!�#�#
/%>��;�-�

This is the top-level execution path for the nodes. The paron command (line 1) starts up
the nodes in farm mode; i.e., each node is in its own zone, with output going to file o.out, and
using the non-XODUS executable for spawned nodes since they do no graphical display.
Line 2 uses a remote function call to print a startup message on node 0. Line 3 causes
all nodes to synchronize here. barrierall is used because the nodes are in separate zones
— recall that the barrier command synchronizes the nodes in a zone, whereas barrierall
synchronizes all the nodes in every zone. Line 5 is only executed by the global zero node
(mytotalnode gives the global node number, and mynode gives the node number within the
zone). Line 5 is a call to the function search, described below, which conducts the parameter
search. The non-zero nodes continue to line 7, which causes them all to wait at the barrier
(with ID 7 and timeout 1 million seconds). The zero node does not reach this barrier until
the call to search in line 5 returns, i.e., until the search is complete. At that point, the zero

370 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

node satisfies the barrier and all nodes flush their buffers and synchronize (line 8) then exit
(line 9). In summary, the non-zero nodes sit at a barrier while the zero node conducts the
search; then all nodes exit.

We use a number of global variables in the script:

���	�
���(��!�?	����)# �������������� "!�# ���	� � � ������!�?������!��&��
���	�$���	?H�-4&�(?���'	��9�1*-,�,�, �������������� "!�#C� ��?H�-4&�-?���'	�� ��!"��4�'	�6��'����
���	�
8�!68�����'��H�6!��%�+*-,�, ����	���	�%!�#
8�!�8�����'��&�6!6�.��!��&'�������'����
#���!�'��
�;�-�������	��'��&�(!����68	 �!��0��, � ,	
"���<���	��'��H�6!��.8	 	!���'��;�6���-��3
#���!�'��0� ������#��-������� @ �H'�)���#H���������<�����-�	 � ��6�	�.=�!� H-���6����-�.#H�-�������<4�'��6����
���	� '��-����'	���(8�!�8�����'��&�6!��0� , ����	���	�%!�#:�-�	 � 	���	��8�!68�����'��H�6!��
���	������'�(����#��-� @ �&!�(����#H��� ���2����?H���6��%���	��!
#H��������� ?	'���'�(�� ��&�(���	 	�
���	�"#� 	���	�����	?	��)
� , ���2����?	��):� �2#	'� 6�$!�# #� �����=�!� �F	��
���	�
�&���' @ �&��6� �����;�-�:(�� &� �	I
 ���8	 	������	�	'��&�6!��.!�#
8�'� �'��&������ �

While the non-zero nodes are sitting at a barrier, they can process incoming remote function
calls and other requests from other nodes. The zero node conducts the search by issuing
remote function calls to the non-zero nodes to evaluate individuals and return fitness values.
The function that executes this search is:

* #����&�-�&�6!��26��'� H�-/

 � �	� �
� � �;�-����6��'� H�-/ ���;������#	'� (�
# #�!� �� ��� , 9�'�2����?��-4&�(?���'	��� ���$�"� *��
� �(#�� �!�.8�!68�����'��H�6!����. ���;����������?��-4&�(?���'	�
% �	��6� ���	��'��	�	������?��-4&�(?��	'	� �� �'��	? ,"'��(����'	���68�!�8�����'��&�6!6�-� ����?
(?	�	����I�'���������'�(F!����� �6�&���'$�'�6�&��6� �
, �6��?
/ #����;��-/ ���-/�! ���-/�! ���&���&��-/���?"���'� H��/ '�� � ��I����	?	'����	�� 8	 H���	���6����(�
*-,"����?

In this function, line 3 initializes data structures used in conducting the search (init search)
and managing the farming out of tasks to nodes (init farm). The loop in lines 4–8 farms
out the evaluations to the nodes. Lines 5 and 6 select parameter values for the evaluation.
An initial population is selected randomly (init individual), after which new individuals are
derived from the existing population by mutation (mutate individual). Line 7 sends the task
to the worker (delegate task) using parameter values bs a and bs b. Line 9 ensures the
search has completed (finish) and then prints the best match (print best). These functions
are described below.

#����H�(�&�6!��2���;�-���	���'� H��/
�(���'��	�0�����	�� 	'	�
��IH� ?H���'������%�6IH
�(���'��	�0�����	�� 	'	�
��IH��(8�!�8�����'��&�6!��

21.7. Parameter Search Examples 371

'�?�?�#H�(�	��?%��I���68�!�8�����'��&�(!��
'���4�'	�6��� '�?�?�#��6�	��?%�6IH��68�!68�����'��H�6!�������4�'	�(���
'�?�?�#H�(�	��?%��I���68�!�8�����'��&�(!��.#��-�������
�(���'��	�-�&'�8 �6IH��68�!68�����'��H�6!��
�+�68�!�8�����'��&�6!�� �"*

����?
#����H�(�&�6!��2���;�-����#	'� 6�
�(���'��	�0�����	�� 	'	�
��#	'� (� E?H���'6�����%��#	'� 6�
�(���'��	�0�����	�� 	'	�
��#	'� (�;��#� ���� '�?�?�#H�6�	��?%��#	'� (�;��#� ����04�'	�6���
�(���'��	�-�&'�8 ��#	'� 6�;��#� ��������6���(��!�?	��� H*�� *
#	!� � �(�	, � �	�6���6��!�?	��� �*��� �(�H���;*��. ����	#��6�	��?%��#� ������ ��������4�'	�6��� ��� �;*��� ���	?
#� ����	������?	��).�%���(��!�?	��� +

����?

These two functions create (with createmap) and initialize the data structures used to
control the search (/population) and the farming out of tasks to nodes (/free). Each individ-
ual in the /population vector has fields for the values of the two parameters and the fitness
those parameters provide. The entries in the free vector have one field, the zone number of
a node that does not currently have a task assigned. The free index variable is an index into
this vector of the last entry that contains a free node.

#����H�(�&�6!��2���;�-��������?H�-4H�(?���'	�
�&���'
� �� 	'���?",+%����	�	%$� �&��6� ���� �'���?%,+%����	� %$�

����?
#����H�(�&�6!��<���	��'��	� � 4 �

����� 4 @ � @E���1*
#	!� � ����, �)�$* % ���$�!�+*��

�(# � �6 �'���?",C*��)�
�;�-�������	��'��&�6!����(8	 	!�� �� 42�%4�� � ����?
���%���
�

���	?
 ������	 �����4 �

����?
#����H�(�&�6!��<���	��'��	�	������?��-4&�(?���'	� ���-/�!�6�����

�����C�-/�!�����
�&���'
� �����	��'����)�6I����	#H�(�	��?%�68�!�8�����'��&�6!�� � ���-/�!	����-���0'���4�'	�6���$�	�
�&��6� � �����	��'����)�6I����	#H�(�	��?%�68�!�8�����'��&�6!�� � ���-/�!	����-��� ����4�'	�6���$�	�

����?

The three functions above generate a new individual. init individual generates random
parameter values. mutate individual generates a parameter values by mutating the chosen
individual with mutate.

*<#����&�(�H�6!��%?	������I�'��	�	����'�-F

372 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

 =�/&����� �-*��
� �(# � #� �����������?	��))&�� , �
# '�-3��&� =�!� �F��� ��, � ��I�����#H�6�	�6?���#� ������ ��#� �����������?	��) ��� 4�'	�(���$�'�6�&���'$�'�6�&��6� �
� #� 	���	�����	?	��).�"#� ����	������?���) $*�
% ������	 ��
(�	���� ������'� ���/	 ���'�?�� �6��?
, ���	?
/"����?
#����H�(�&�6!��
#H���;���/
=�/;����� � #� ����	��� ��?	��)'�.���(��!�?	��")
 �. ������'� ���/� ���'�?�. ���	?

����?

These two functions control the assignment of tasks to nodes and the gathering of re-
sults. delegate task waits until there is a free node, then issues an asynchronous remote
function call to the worker to evaluate the current parameterization (bs a, bs b). Line 3
tests for a free node. If there is one, the task is assigned (line 4), the node is removed from
the free set (line 5), and the function returns (line 6). If there is no free worker, worker
responses are checked for (line 7) and the loop iterates (line 2) until one is found.

This function prints out the best match found during the search:
#����H�(�&�6!���8	 &���	���6����(�

#���!�'�� ' @E�
'"� � �6I����	#H�(�	��?
�(8�!�8�����'��&�6!�� � ���&!�-����#��-� ����'	�64�'	�6���	�! +�	
 (%	,�� ,-���C*�,�,�,�� ,�
�2� � �6I����	#H�(�	��?
�(8�!�8�����'��&�6!�� � ���&!�-����#��-� ���9���64�'	�6���	�! +�	
 (%	,�� ,-���C*�,�,�,�� ,�
����/�! ��G���(�0�&'��H�-/
=;�-��/2'%� � ��'$� �;@E����� �6� � �;@ #H�-��������� �!���&'�)���#H�-���������

����?

There is one other function which executes on the node that controls the search (zone 0).
When a node has completed an evaluation, it issues a remote function call for the controlling
node to report the result. It calls:

* #����&�-�&�6!��
 	�����	 ����� ���-����� � ��!�?	� @ �H���' @ �&��(� @E#H�-� �

 � �	�
��!�?	� @ �&���' @ �&��(�
� #	��!�'��%#H���
# �-# � '��(����'	���68�!�8�����'��H�(!��!�.8�!68�����'��H�6!����
� ����'�(����#H���
��'��(����'	���68�!�8�����'��&�6!6� � ������#H�-������� �� H*-� �&*-,
% '��(����'	���68�!�8�����'��&�6!6��� '��(����'����68�!�8�����'��&�(!6� �1*
(�6��?
, �-# � #��-��&�� � ����#H�-�������$�
/ �����#H�6�	��?
�68�!�8�����'��&�6!6� � ������'�-����#��-�$���<#H�-�������"��#H�-� �
*-, �����#H�6�	��?
�68�!�8�����'��&�6!6� � ������'�-����#��-�$����'	��4�'	�(���)�6�&���'$�
� �����#H�6�	��?
�68�!�8�����'��&�6!6� � ������'�-����#��-�$���9����4�'	�(���)�6�&��(� �
*
 �(#�� '��(����'	���68�!�8�����'��&�(!��0���
8�!�8�����'��&�(!����.B �����!���8��	������#H�-������������)��� ��-�H��� ����?
* � �6��?

21.7. Parameter Search Examples 373

* # ���-/�! �+� ��#H���-�) 6�
-� #� ����	��� ��?	��)���#� ����	������?���)!�+
* % 6���	#H�6����?%��#� 	����� ��#� ����	��� ��?	��)$��� 4�'	�6���)�(��!�?	�$�
* ("����?

return result adds the individual (lines 9–12) to the population if either there is room (line
4), or if the individual has fitness greater than some individual currently in the population
(line 8). It prints the fitness (line 14) and puts the node in the /free vector (lines 15–16).
Notice in line 12 that if the population is full, then the individuals with minimum and
maximum fitness are computed with recompute fitness extremes, shown below.

#����H�(�&�6!��. �����!-��8��	���	��#H�-�����������6)��� ��-�H��
� ������#��-������� �+*-� �;*-,�B�&'�)���#��-�������<� �*-� �;*-,
#	!� � ����, 9�!� '��(����'	���68�!�8�����'��&�(!�� �0�$�"�+*��
�(#�� ��I	���	#H�6����?%�68�!68�����'��H�6!�� � ��������#H�-���������!�<� ������#H�-�������$�
����'�(����#H�-���+�. � ������#H�-������� � ��I�����#H�6�	��?.�68�!�8�����'��&�(!�� � ��� ���<#H�-���������

���	?
�(#�� ��I	���	#H�6����?%�68�!68�����'��H�6!�� � ��������#H�-���������!&<�&'�)���#H�-�������$�
�&!�(����#H�-�
�$�. �&'�)���#��-������� ����I����	#��6�	��?%�(8�!�8�����'��&�6!�� � �������<#H�����������

���	?
����?

����?

Since this function is called by return result, it also executes on node 0, which controls
the search. The evaluating node code is much simpler in this example because our evalu-
ation function evaluate is trivial. In a real application, the evaluation would be computed
by running a GENESIS model and comparing its output with experimental data. The two
functions that execute on the evaluating node in our example are:

#����H�(�&�6!���=�!� �F��� � �&���' @ �&��6���
���	�%�&���' @ �H��6�
#���!�'�� ' @ �
#���!�'��"#H���
'"� � �&���'))�	
	(%	,�� , �<�+*-,�,�,�� , �2� � �&��6��)�	
	(% ,�� , �0�$*-,�,�, � ,
#H�-� � ����4�'	�6��'����'��'$�)�6�-�	�
 ������	 ����� ��������� ��, � ,�����3���!���'	�6��!�?	�$���6�&���'	�'�6�&��6�-�'��#H�-�-�

����?
#����H�(�&�6!��%��4�'	�6��'���� � ' @ ���

#���!�'�� ' @E� @ �&'��H�-/ @E#H�-�
�&'��H�-/ � � � ��� �	��'��H"��'$ H*�� �'����'��H'�(� H*��	� �!�	��'��H'��' �;*��	�"����'��H'�(� �;*��	� �	�
�(#�� �&'��H�-/�� � ,�� , ��E#H�-� � * � ,	�	��6>� �� ���&'��H�-/ �	�
�	�	�� #H�-�"�+*-� �$/ ���	?

374 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

 ������	 �����#��-�-�
����?

worker is the function called by the controlling node to execute an evaluation. It converts
the bit string representation of the parameters to floating point values, computes the fitness
with a call to evaluate, and returns the result to the controlling node (0.0) using a remote
function call. In our example, evaluate computes a match value that has two minima at
(1 � 1) and (� 1 ��� 1), and returns a fitness value that is the inverse of the square root of the
match.

21.8 I/O Issues

Parallel simulations can often benefit from visualizations with XODUS during develop-
ment, and often will require large input and/or output files in full scale production runs.
Modelers should be aware that the way these I/O issues are dealt with can have a consider-
able impact on performance.

PGENESIS includes a capability to allow multiple nodes to display on the same XO-
DUS widget so that, for example, a single xview can be used to show activation of all the
cells in a distributed V1 layer. In serial GENESIS there are several ways to set up input
to an xview element, described in Chapter 18 and in the documentation for xview in the
GENESIS Reference Manual. However, the one we must use for internode communication
in PGENESIS is to set up remote messages from a source element to a destination xview
element. This is done by using the PGENESIS raddmsg command.

If every node were to set up COORDS and VALn messages independently, the VAL
messages could easily get associated with the wrong COORDS messages, depending on
the order in which the particular add message requests were handled. To deal with this
difficulty, the standard GENESIS xview object has been extended in PGENESIS to allow
IVALn messages to be associated with a particular ICOORDS message. The user does this
by choosing an integral index with each message that is set up, and passing it as the first
parameter of the ICOORDS and IVALn messages. IVAL1 through IVAL5 messages will
be associated with ICOORDS messages having the same index. For an example of this, see
the example script Scripts/par io/par view.g in the PGENESIS distribution.

PGENESIS also includes a capability for writing a single disk file from multiple nodes.
For disk output in serial GENESIS, it is typical to create an asc file element and then set up
a SAVE message that will cause a value to be written to a file on every time step. In PGE-
NESIS it is possible to add such messages from elements on various nodes. However, there
is no guarantee of order for the normal asc file object, so in PGENESIS the par asc file
object is provided. When SAVE messages are set up, the first parameter is an integral index
that is used to maintain a fixed ordering among all of the various incoming messages to
the par asc file element. This integral index should be unique and in the range from 0 to

21.9. Summary of Script Language Extensions 375

the number of incoming messages minus 1, inclusive. Serial GENESIS uses the disk out
object for writing array data to a file in an efficient binary format. We have similarly pro-
vided a corresponding par disk out object that takes an added integral index parameter.
The Scripts/par io/par out.g file in the PGENESIS distribution illustrates the use of this
object.

Both of these extensions for I/O support require that information flow in the form of
PGENESIS messages from the source node to the destination node (which holds the xview,
par asc file, or par disk out element). If you are doing very large amounts of I/O from
many nodes, the destination node would likely become a simulation bottleneck. In those
situations, it would likely be advantageous to consider a solution where each node was
doing its I/O to and from files on the local disk, rather than using the above mechanisms.

21.9 Summary of Script Language Extensions

21.9.1 Startup/Shutdown

To use any of the capabilities of the parallel library, one must first start up the library.
This will also spawn the requested number of worker nodes on architectures that support
process-spawning.

paron Starts up the parallel library.
paroff Shuts down the parallel library.

There are several commands for obtaining configuration information:

mynode Number of this node in this zone.
nnodes Number of nodes in this zone.
myzone Number of this node’s zone.
nzones Number of zones.
ntotalnodes Number of nodes in all zones.
mytotalnode Unique number over all zones for this node.
mypvmid Task identifier used by PVM for this node.
npvmcpu Number of CPUs used by PVM in the parallel machine.

The ability to run parallel threads can be turned on or off (the default is on) with the related
commands:

threadson Re-enables parallelism.
threadsoff Disables parallelism.
clearthreads Process all queued requests from other nodes.
clearthread Process one queued request from another node.

376 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

21.9.2 Adding Messages

It is possible to create arbitrary messages between elements on different nodes using the
raddmsg command:

raddmsg Adds message between the listed source elements and
the listed destination elements (which may be designated
to be on other nodes by means of the “@” notation).

The following routine displays internode messages correctly (and suppresses the display of
the postmaster messages used to implement the internode messages).

rshowmsg Shows the messages (intranode and internode) associated
with a given element.

21.9.3 Synaptic Connections

There are several routines that allow one to set up multiple synaptic connections across
nodes. They are analogs of the normal GENESIS routines for setting up synapses.

rvolumeconnect Connects one group of elements in a volume to another,
using source and destination element lists and masks.

rvolumedelay Sets delays of a group of synapses receiving input
from a list of presynaptic elements in a volume.

rvolumeweight Sets weights of a group of synapses receiving input
from a list of presynaptic elements in a volume.

21.9.4 Remote Command Execution and Synchronization

command@nodelist Executes command on specified nodes synchronously
(i.e., does not return until remote commands have
completed and returned result).

async command@nodelist Executes command on specified nodes asynchronously
(i.e., returns integer “future” without waiting
for result).

waiton Wait for completion of a specified async command.
barrier Wait for all nodes in my zone to reach this point.
barrierall Wait for all nodes in all zones to reach this point.

21.9.5 PGENESIS Objects

postmaster One postmaster (/post) is created per node by the
paron command to manage internode synchronization
and communication.

par asc file Analogous to asc file, except uses an ordering index.
par disk out Analogous to disk out, except uses an ordering index.

21.9. Summary of Script Language Extensions 377

21.9.6 Modifiable PGENESIS Parameters

Several parameters of PGENESIS can be modified by the user by setting field values in the
/post element. These fields, and their meanings, are:

1. sync before step. A Boolean indicating whether nodes in a zone synchronize before
a simulation step. The default value is 1 (true). Asynchronous simulation is required
for the lookahead optimization and may be faster even without lookahead.

2. remote info. A Boolean indicating if information about messages between nodes
should be kept for display with rshowmsg. This is an overhead that could be dis-
pensed with for mature models. The default value is 1.

3. perfmon. A Boolean indicating if performance statistics should be gathered. This is a
feature under development, explained in the PGENESIS documentation. The default
value is 0.

4. msg hang time. A floating point value indicating how many seconds PGENESIS
should wait before timing out on remote operations. The default value is 120.0 sec-
onds. If debugging interactively, it is often useful to set this to a very large value so
that one does not have to worry about the timing out of other nodes.

5. pvm hang time. A floating point value indicating how many seconds before timing
out that PVM internal operations should wait. When a PGENESIS node is wait-
ing for some message it expects, it will print a message followed by dots every
pvm hang time seconds. The default value is 3.0 seconds.

6. xupdate period. A floating point value indicating the number of seconds between a
PGENESIS node’s requests that X events be processed, when it is waiting for some
expected message. High values can cause poor response from XODUS widgets. Low
values can have an adverse impact on performance — but you shouldn’t be using
XODUS if you want performance. The default value is 0.01 seconds.

21.9.7 Unsupported and Dangerous Operations

It is extremely easy to reach deadlock in parallel programs; one way to reduce the chances
of this is the frequent use of barriers and sparse use of asynchronous commands. However,
barriers can be expensive to execute and can reduce parallelism, so they should be placed
judiciously in scripts.

The serial GENESIS stop command should be used only with extreme care in zones
containing more than one node. PGENESIS executes an implicit barrier before performing
a simulation step. If any nodes enter the barrier, then all nodes must, otherwise deadlock
will result. It is very difficult to satisfy this requirement when the stop command is issued.

378 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

Issuing step commands must be done with care. Since the step command executes an
implicit barrier, failure to observe the following rule can result in deadlock. The two safe
methods to issue step commands are:

1. step commands are issued exclusively locally (i.e., no use of the @ operator with
step).

2. remote simulation step commands (e.g., ���
� � � �����) are issued by at most one node
in a zone.

21.10 Exercises

1. Modify the “hello, world” program in Sec. 21.5 to have node 0 print “��������� � � ������� ”
on both nodes 1 and 2. Use the pgenesis script in the “ 	���� � %
)������ ” mode to observe
that the output is correctly produced on the worker nodes. Now, change the paron
statement to include “ 	���%
� � %�� � ��������� � � ��%�� ” so that their output is redirected into
a file. When doing this, be sure to invoke pgenesis without the “ 	���� � %�) ����� ” flag
or that will override the file redirection.

2. Create a very simple network model on two nodes using the neural model provided
in Scripts/simple. Incorporate this by include’ing the neuron.g file in that directory.
Write a script to create neuron A on node 0 and neuron B on node 1. Create a
synapse from A to B using the raddmsg command. Verify that the model works
by creating a display element on both node 0 and node 1 using the create display
function. Manually fire neuron A on node 0 and watch that the neuron B on node 1
fires in succession.

3. Partition the network model example of Sec. 21.6 so that all retinal nodes reside on
node 1, and all V1 cells on node 2. Display the V1 horizontal and V1 vertical cells in
two separate windows, each controlled by node 2.

4. Construct a “central pattern generator” by connecting five neurons in a ring fashion
with each neuron making an excitatory synapse onto its clockwise neighbor. Place
each neuron on its own node and set the axonal delay to 5 msec. Investigate the use
of the lookahead feature to speed up the simulation. Optional: use the performance
monitoring capabilities described in the PGENESIS documentation.

5. Using the neuron model and real spike data file supplied with the PGENESIS dis-
tribution in Scripts/experiment, modify the parameter search of Sec. 21.7 to use a
realistic evaluation function that employs a least-squared error method for comparing
the simulated spikes to the actual data. Use it to find the values of the conductances

21.10. Exercises 379

for the fast Na current and the delayed-rectifier K current that best match the data.
Hint: create an evaluator element that accepts SPIKE messages and in the action han-
dler (set by addaction); compare the simulated spike times against the spike times of
the actual data.

380 Chapter 21. Large-Scale Simulation Using Parallel GENESIS

