
� �������	��
 ��

Advanced XODUS Techniques:
Simulation Visualization

UPINDER S. BHALLA

22.1 Introduction

One of the biggest hazards in developing a simulation is the pressure to make it user-
friendly. If you ever make the mistake of making a simulation easy for people to play
with and understand, they will suddenly discover gaping holes in your model design, and
start to think up all sorts of “improvements” for you to make. An even more unpleasant sit-
uation can arise when you have sent off the final page proofs of your simulation paper, and
decide that now is a good time to provide it with a colorful display so that people reading
your paper can run the simulation themselves. Inevitably, the display will reveal a funda-
mental bug in the simulation that no one (least of all yourself) would ever have noticed in
all the hundreds of lines of simulation code. The prudent builder of simulations will avoid
any compromises when it comes to obfuscation. This chapter, then, is for the reckless,
since its stated goal is to reveal all, to shine the bright light of day on the hidden crannies of
simulations where bugs lurk, and to display the gory details using the rainbow colorscale in
an animated three-dimensional draw widget.

381

382 Chapter 22. Advanced XODUS Techniques: Simulation Visualization

22.2 What Can Your User Interface Do for You?

A user interface is a tool for communication. It has a role wherever you wish to interact
with the computer, with data, or with other people. Teaching, demonstrating simulations,
or facilitating development are all common applications. A graphical interface can be much
more than a set of buttons telling a simulation to start and stop, with a graph or two thrown
in. You have already met examples of some of the more interesting things one can do with
XODUS in the form of the demos such as Orient tut (Chapter 17) and simulation building
tools such as Neurokit (Chapter 7). In the technical sense, though, there are four main
operations for which user interfaces, and XODUS in particular, are designed.

1. Input. An interface should make it easier to provide control signals for a simulation,
and to assign parameters.

2. Output. An interface should simplify the monitoring of interesting aspects of sim-
ulation, and especially be able to provide an easily interpreted view of a complex
simulation.

3. Checking for errors. This includes, but goes beyond, simply monitoring the progress
of a simulation to see if it is behaving strangely. Several of the advanced XODUS
widgets are designed to help with analyzing the structure of a simulation, so as to
check that the simulation is connected up the way you think it is.

4. Building simulations. Writing a tool to help users build simulations is about the
hardest user interface task. It embodies all of the aspects listed above, and has special
challenges all its own.

In the course of working through this chapter you will be introduced to graphical compo-
nents that are used for carrying out all the above user interface operations. The latter part
of the chapter consists of an extended example that uses many of the user interface com-
ponents to put together a simulation builder. Along the way you will get to see some of
the organizing principles of XODUS, and how they all fit into the framework of GENESIS
objects, actions, and functions.

22.3 Draw/Pix Philosophy

As long as one is restricted to displaying single data points (dialogs) or arranging widgets
on the screen (forms), the graphical interface world is simple. Displaying anything more
complex than text or bitmapped images brings in all sorts of complications such as scaling,
rotation, managing events, and so on. In XODUS, all these more complex displays are
handled by an elite family of widgets called draw widgets, and their children, which are

22.3. Draw/Pix Philosophy 383

pix widgets.1 Even such an apparently simple operation as plotting a graph turns out to be
sufficiently complex that it is handled by a specialized version of a draw widget, although
most of the complexities are hidden from you.

From the point of view of the user, a draw widget is a window onto three-dimensional
space, and a pix is any item visible in that space. Depending on the perspective of the
window, a pix may not be visible (for example, it may be off to the side of the window),
or it may be occluded (another pix may be in front of it) or it may simply be too small to
see (a 5-micron neuron is not easy to find in a window representing a volume of space that
is a meter on each side). There is the inevitable tradeoff here: the flexibility in being able
to look at three-dimensional objects and do zooms, pans and rotations has to be paid for by
specifying more parameters and by having to do more display computations.

There are some parallels between the draw/pix relationship and the familiar form/widget
relationship. First, a pix can only be displayed in a draw. Second, in order to be displayed
by a draw, the pix must be a child (or descendant) of the draw. Third, the draw “manages”
the pix. Just as a widget is at the mercy of the parent form with regard to resizing, hiding
and so on, a pix is only displayed according to what the parent draw decides. A basic
organizing principle is that any pix can be displayed in any draw. There is a common set
of properties for all draws, and likewise a common set of properties for all pixes, which
make this work uniformly. To put it in computer science terms, all draws are subclassed
from the coredraw object, and all pixes are subclassed from the pix object. The operations
performed by the coredraw object and its subclasses include:

1. Performing coordinate transforms for the pixes. Different draws project pixes in
different ways according to the transformations available in the draw widget.

2. Managing events for the pixes. These include all interface events such as mouse
clicks, drags and drops, and resize requests. For each mouse event the draw widget
must identify the destination pix and pass the event on to it.

Similarly, all pix subclasses carry out the following set of common operations.

1. Managing a set of coordinates for the display.

2. Doing the actual graphical display once the transformations have been completed by
the parent draw widget.

3. Dealing with interface events that have been forwarded from the parent draw widget.

1If one is really particular about nomenclature, one should refer to pixes as gadgets rather than widgets,
since gadget is what the gurus at Project Athena have chosen to call windowless widgets. I do not bother with
this distinction.

384 Chapter 22. Advanced XODUS Techniques: Simulation Visualization

22.4 Meet the Cast

The forms, buttons and dialogs you have met in earlier chapters are the lower invertebrates
on the interface evolutionary tree. The graph widget is actually a highly evolved interface
component that has taken to slumming with the “simple widgets,” There is even a rumor
that it underwent a frontal lobotomy in order to fit in better — brain damage, by any other
name. You have had glimpses of some of the advanced widgets in the tutorials such as Ori-
ent tut and Neurokit. In this section we provide brief sketches of their function and a simple
example or two. As always, for detailed information, read the manuals and documentation,
and look at the examples.

A note on nomenclature: all XODUS widgets and almost all XODUS-related com-
mands begin with an “x”. This preceding “x” is usually omitted in the text, although all the
examples have the commands and names in full.

22.4.1 The Draw Widget Family

Coredraw

This is the base class of all draw widgets. The only transformation it knows about is projec-
tion in the x-y plane. It is useful if the pix being displayed is flat and has no business using
another projection.

Graph

This is a highly specialized draw widget, whose function you already know. Its projections
are also confined to the x-y plane. It is designed specifically to manage axes and plot pixes,
and does so in a very stereotypical and bossy manner, even interfering with their creation
and destruction. As you have already seen, it creates child plots automatically when a PLOT
message is sent to the graph widget. However, one can explicitly add any pix (including
plots and axes) to the graph and do the usual manipulations on them.

Dumbdraw

This exists only as an example for those wishing to understand the C-code implementation
of the draw widget hierarchy, and how to manage inheritance from the coredraw widget. It
only differs from the coredraw in being able to perform projections in the x-z and y-z planes
as well as the x-y plane. If one really needs the x-z and y-z planes, one could just as well
use the draw widget.

22.4. Meet the Cast 385

Draw

This is the most general draw widget, providing general orthographic as well as perspective
transformations. In the examples that follow we use this as illustrative of all the other draw
classes, although they cannot handle all of the transformations that this does.

1. Create a draw widget, specifying the region of space that it displays and a function to
execute.�

���������
	�����������������
���������
	�� !�������� �"$#% 	�'&)(%�*�% 	�+��	 *,%�- '&�(%�*�%�- +��	 *�%�. '&�(%�*,%�. /��	 * #%�0

�
�/&�1��324�

�
5 �
6���7�7��8�����439��;:/2�

�<��������+���������	 0 5 ������������
2. In order to see how the coordinate transformations work in the draw widget, we need

to have something to display in it. We will use a simple xshape, which is a generic
pix for drawing shapes, to draw an open green rectangle:�

���������
	 0 5 ��1�� 0 5 ��1=� % ��>,>�������(�#%�0
�
�/&�1��324�

�
5 �
6���7�7��8�����439��;:/2?#%

�
������� 0 �@���A������"B������C����)"B��D��ACE���F"B�@DE�A�E����"B�@�E�A�E����"

3. Let us first investigate the keyboard controls of the draw widget for zoom and pan.
In order to use keyboard controls for manipulating a draw widget, the mouse must be
positioned on the widget.

G Move the mouse onto the draw widget.G Press the arrow keys on your keyboard. The rectangle should move around on
the draw widget in the appropriate directions. These are the pan controls.G Press the angle-brackets keys (i.e., the comma and period keys). These should
shrink and expand the rectangle, respectively.G Return the rectangle to a reasonable size and position for the next step.

4. Now let us look at the transformations provided by the draw widget.

G You are currently in the x-y plane, looking down from the z axis. So, the current
transformation is identified by the “z” key. Hit the “y” key to go into the x-z
plane. The rectangle will probably jump a little, because of the pan operations
you did earlier. Its dimensions will also change, because you are now looking
at it from another direction.

386 Chapter 22. Advanced XODUS Techniques: Simulation Visualization

G Go into the y-z plane by hitting the “x” key. Now the rectangle turns into a tilted
line. This is because you are now looking at it edge-on.G To get a better feel for the rectangle’s orientation in three-dimensional space,
we will now go into an orthographic projection. This lets us look at the object
from any direction, but without using perspective. Hit the “o” key to go into
orthographic mode. The rectangle will jump again, and change shape.G As before, the arrow and angle bracket keys can be used to manipulate the pan
and zoom of the display. Now, however, the pan operations can affect all three
axes.G In the orthographic mode, we can change the viewpoint of the draw widget. The
viewpoint is a three-dimensional vector along which the observer looks at the
draw widget, and is defined by the fields vx, vy and vz. It is equivalent to the
normal to the plane of projection of the draw widget. To rotate the rectangle
about the z-axis, keep the “shift” key pressed while you press the left and right
arrow keys. Check how the vx and vy fields change when you do this, while the
vz field stays the same. Conversely, you can also assign values to the vx, vy and
vz fields to set up predefined viewpoints from scripts.G To rotate about the horizontal, keep the “shift” key pressed while you hit the up
and down arrows.G It is very likely that by now you have experienced the Necker cube illusion with
the rectangle — it is hard to decide which end of it is near you, and which is
further away. This is a drawback of the orthographic projection. So let us go
the whole hog, and try the perspective projection. Hit the “p” key.G The rectangle should change shape slightly, and will also shrink by a factor of 2
or so. Try the rotation operations again. Can you see any effect of perspective?G The perspective transformation introduces yet another parameter: the distance
of the observer from the object. As you get closer to the object, the amount of
distortion introduced by perspective increases. If you get too near the object,
really strange things might happen as error-trapping code kicks in. Play around
with the perspective distortion by hitting the square bracket keys on the key-
board, i.e., “[” and “]”, and then watching the effect of rotating the viewpoint.G Note that in the limit, as one gets further away from the object, the perspective
transformation approaches the orthographic projection (except for the scaling
factor). Test this by toggling between the “o” and “p” projections.

5. Finally, let’s check out the effect of mouse actions on the draw widget and its con-
tents. Events in the draw widget are directed to the nearest pix, if it is within a certain

22.4. Meet the Cast 387

distance (usually around 10 pixels) of the mouse event. Otherwise the draw widget
handles the events itself.

G Click on a line of the rectangle. The rectangle should be transiently high-
lighted, and a line should appear on the console window saying: ������������	
��� ����	�� �� 	���� ���� ����� .G If you click on a clear area of the draw widget, the event gets directed to the
draw. The console now says: �
����������	���� ����	�� �� 	
��� .

We go into considerably more detail on events in XODUS in a later section of this chapter.
Now we proceed to the members of the pix family of widgets.

22.4.2 The Pix Family

pix

This is the base class of all pix widgets, and its only purpose is to act as the family patriarch.
If one creates a pix, it will draw a set of cross-hairs, which are not particularly useful, but
we demonstrate it anyway. Continuing with the previous example of the draw widget:�

���������
	�1+&4	 1�&4	
will put a pix widget in the draw. The pix widget looks the same, no matter what transfor-
mation you use. Try them out. When you have convinced yourself, go into the x-y plane
(the “z” key) for the next set of examples.

The pix widget, and all its subclasses, have the following common set of fields:

fg – foreground color. Try it out by setting fg to various colors:

0 �����/& ��7��$1�&�	,��> - ��7�7����0 �����/& ��7��$1�&�	,��>��;7��=�
If you load a colorscale, then 64 colors are accessible as numbers from 0 to 63:

	
�
��7���� 0

�
��7��?���;&)(��=���0 �����/& ��7��$1�&�	,��> �0 �����/& ��7��$1�&�	,��> D�C0 �����/& ��7��$1�&�	,��>! �D

tx, ty, tz – translations to be applied to the pix as a whole, to move it around in space. For
example:

0 �����/& ��7��$1�&�	<��	 % �

388 Chapter 22. Advanced XODUS Techniques: Simulation Visualization

will move the pix by 1 unit in the negative x direction.

script – script command(s) to execute in response to interface events. Assign a command
to the pix:

0 �����/& ��7��$1�&�	 0
�
�+&�1��32��

�
5 � � 5 & 0 & 0 � 1�&4	 ��& ��>���� 2

Now click at the intersection of the crossbars to see what happens.

value – a text string with a value associated with the pix. This is often used as an argument
for the script command, using the angle-bracket notation discussed in Sec. 22.5.1.

0 �����/& ��7��$1�&�	�����7 �=��2��4C�D�� * 20 �����/& ��7��$1�&�	 0
�
�+&�1��32��

�
5 � � 5 ������7 �=�8��� � 5 � 1�&4	�9��;: & 0 9��=:;2

Now click on the pix again.

pixflags – a set of flags that determine many of the properties of the pix including visibil-
ity, sensitivity to mouse events, how it handles transformations, highlighting, and so
on. The pixflags command from the command line lists the options. A typical flag
operation is to make the pix invisible:

0 �����/& ��7��$1�&�	81+&4	���7���> 0 �
Then you can flip the flag back:

0 �����/& ��7��$1�&�	81+&4	���7���> 0�� �
Another common flag is used to turn off the sensitivity to the mouse:

0 �����/& ��7��$1�&�	81+&4	���7���> 0
�

Now it will ignore mouse events.

sphere

This draws a circle. Its main purpose is to serve as a coding example for those wishing to
create their own pixes.�

���������
	 0 1 5 ����� 0 1 5 ����� % ��>,����� % � �	� *

22.4. Meet the Cast 389

gif

This loads in a gif-format image file and displays it within the draw widget. It does not
attempt to scale the image according to the transformations of the draw widget, but it does
reposition the center of the image appropriately. Locate a suitable gif file. There should be
one called xodus.gif in the Scripts/examples/XODUS directory.�

���������
	�>/& � >+& � % �/&�7���(=�4+�$	������ 0 � >+& �
If you cannot find a gif file, do not despair. The gif example is not needed for any of the
following steps.

plot

This makes plots. It is created automatically by the graph widget when it receives a PLOT
message, but can be created explicitly and is perfectly capable of handling messages on
its own. It is a perfectly normal pix, so it can be created in other classes of draw widgets
as well. It has all sorts of options relating to data compression, display modes, and so on,
which are illustrated in previous examples and in the xgraph documentation and examples.
There is a generic pixflags option that is especially relevant to the plot pix. This is the flush
option, which turns off the forced updating of a pix after an update. When you have a dozen
or so plots, it becomes pretty time-consuming to update the display a dozen times per time
step.

axis

This makes axes in three dimensions. Two axis pixes are created automatically (for the x
and y axes, respectively) when a graph widget is created. Again, the axis pix can be created
explicitly as well, and is at home in any kind of draw widget. One can provide a vector for
both the axis direction and for its tick marks, so it is not restricted to providing axes in the
x-y plane.

shape

This is the workhorse pix. It does what its name implies, which is to draw shapes. The
xshape pix is used extensively as an icon both on its own in a draw widget, and also as a
subordinate pix for some of the really powerful pixes described below. We already have an
example of the xshape up in the draw widget, which we will continue to manipulate here.
First, we have to dig it out from underneath the gif widget.

0 �����/&���7�� 0 5 ��1=� � - D
One can display text in a shape widget:

390 Chapter 22. Advanced XODUS Techniques: Simulation Visualization

0 �����/&���7�� 0 5 ��1=�
����	�� 2��
�4 ��(,	 0 5 ��1=�/20 �����/&���7�� 0 5 ��1=�
����	��
�
��7���� �;7��=�0 �����/&���7�� 0 5 ��1=�
����	�������(�� ��C��

The xshape has several drawmodes:

0 �����/&���7�� 0 5 ��1=� ��������+�������+&�7�7�����7 -0 �����/&���7�� 0 5 ��1=� ��������+������������������>�/��(�� 00 �����/&���7�� 0 5 ��1=� ��������+�������������	���;&�(�� 00 �����/&���7�� 0 5 ��1=� ��������+�������������	
�������� 00 �����/&���7�� 0 5 ��1=� ��������+���������������/&�(=� 0
and so on.

The xshape manages a set of coordinates in the form of three interpol structs (tables),
for the x, y and z coordinates. These can be examined using the usual “

��� ���������� ��� � ”
command. Since the coordinates are stored in standard interpol structs, one can use several
commands for manipulating them. The most obvious is to simply set them:

0 �����/&���7�� 0 5 ��1=�
	�1�� 0�% :������;7�� �@��" % �
There are many other options for manipulating interpol structs, some of which are listed

in Chapter 18. There is a special coordinate specification mode for xshapes which is re-
tained for backwards compatibility and simplicity. It is meant to be used when the shape is
being created, but you can also use it later:�

���������
	 0 5 ��1=�
(=��� 0 5 ��1=� %
�
������� 0 � �����E����"B�@�E��������" ����� �����)"0 �����/&���7��
(=��� 0 5 ��1=�

�
������� 0 �@CE��������" �@�������A��"B�@� �����)�)"

var

This pix is used to display values graphically. It can vary almost any of the graphical
parameters of xshape (e.g., color; coordinates; text x, y and z offsets) to represent changing
values. This is quite a complex pix, and we honor it with a long example. The old example
is pretty cluttered by now, so let’s clean it up a bit:

����7������8�������������������
���������
	�������� ������� ���������� �@���A�����4���� !���4���� �" #% 	 '&�(%�*,% 	�+��	 * %�- &�(%�*,%�- +��	 *�%�. '&)(%�*�%�. +��	 *�
�,������������������

The xvar assumes that a colorscale has been loaded. This was done several steps ago. If
you haven’t been following through all the examples, now is the time to load in a colorscale.

	
�
��7���� 0

�
��7�� ���;&�(������

22.4. Meet the Cast 391

Now create the new xvar:�
���������
	 �����������

The xvar displays values by interpolating between the relevant display parameters of two
subordinate xshapes, which are created by default when the xvar is created.

>���(=� 0 & 0�� C * :�7��������0 5 ��1=� �@� % ��"
Before we go any further, let’s set up a couple of tables to use as inputs to the xvar.�

���������
��� �;7��<������� � ��� � 5 & 0 �����;7�� �+&�7�7 �4'&4�,� ���+&���(�>=7��?��������
��7�78������� ���
����	��

	��
 C � �0 �����/&���7��<������� � 0 ����1��/����� � 0 ����1 0 & . � �	� ����C<#��� �;7�� % :������;7�� �@��"?�8�����;7�� % :������;7�� � ��",� �����;7�� % :������;7�� �@C�"?��
���������
��� �;7��<��������C8��� � 5 & 0 �����;7�� �+&�7�7 �4'&4�,� 0 ����������� 5 ��������
��7�78�������=C��
����	��

	��
 C � �0 �����/&���7��<�������=C 0 ����1��/����� � 0 ����1 0 & . � �	� ���+�?#��� �;7�� % :������;7�� �@��"?�8�����;7�� % :������;7�� � ��",� �����;7�� % :������;7�� �@C�"?C����� 0 >,������� � �������
	�+�?� ����1��������� 0 >,�������=C��������
	��C<� ����1����

First, let’s look at the default display modes of the xvar.

��� 0 ���0 ����1 �4�����
You should see an expanding box, which changes color as it expands. This is the default

display mode, called colorboxview. If you are the owner of an obscenely fast machine, this
example may have whizzed by too fast to see. You can handicap your machine to get it to
display at human speeds by reducing the step size of the tables by an order of magnitude,
and increasing the number of steps correspondingly.

There are several other built-in display modes, which do fairly straightforward things to
the display. Try:

0 �����/&���7���������������/����� �=��	 �+&������� 0 ���0 ����1 �4�����0 �����/&���7���������������/�����
�
��7���� �+&������� 0 ���0 ����1 �4�����0 �����/&���7���������������/����� �/&�7�7 �=��	 �/&������� 0 ���0 ����1 �4�����

There are far more interesting things one can do with the var widget.

392 Chapter 22. Advanced XODUS Techniques: Simulation Visualization

1. At this point you are using the default square shapes that the var created. Let’s change
the coordinates of the first shape, so that instead of starting out as a small square, the
var starts out as a big triangle:

0 �����/& ��7�� �����=� 0 5 ��1=� �@��"
�
������� 0 � % C��A������"B������C�����" �@C�� ���A��"B����� ���A��"��� 0 ���0 ����1 �4�����

You should see a triangle “morphing” into a square. As already mentioned, the way
that var displays values is by interpolating between display parameters whose extreme
values are specified by the child xshapes. In the fillboxview mode we saw previously,
the original shapes were a small and a large square, respectively. Now the shapes are
a triangle and a square. Since the current display parameter refers to the coordinates,
the net effect of interpolation is morphing.

2. You can display a value using more than one graphical parameter at a time. Let us
use the y offset as another such parameter. First we need to have different y offsets in
the shapes:

0 �����/& ��7�� �����=� 0 5 ��1=� � ��"?� - D
Now we need to tell the var that it should use the information coming in on message
VAL1 to display using the y offset:

0 �����/& ��7�� ����� - ����� 0 ��� ������7<���� 0 ���0 ����1 �4�����
and you see that in addition to changing shape, the display is also bouncing up and
down.

3. You can display more than one value at a time. We already have two messages coming
in to the var. Let’s display the second one using colors from 0 to 63.

0 �����/& ��7�� �����=� 0 5 ��1=� �@��"$��> �D0 �����/& ��7�� �����=� 0 5 ��1=� � ��"$��>,�
Note that the range of /tab2 is from 0 to 2. The minimum value is the same as the
default, but we have to specify the appropriate upper limit in the value max table.

22.4. Meet the Cast 393

0 �����/& ��7�� �����
�
��7���� � ����7
C ����7 ��� ��+��	B� ��" C��� 0 ���0 ����1 �4�����

Many of these concepts of displaying values in terms of different graphical parameters are
used in other pixes as well, such as the xview pix and the xcell.

view

As a first approximation, this pix is something like an array of xvars, but much more effi-
cient. Suppose, in the previous example, you wanted to display 100 versions of /tab1. If
you were to make 100 xvars, that would mean 200 child xshapes, and each of them would
have to be set up independently. Instead, you could use an xview. This would require just
2 xshapes, but the display would look just the same.

When an xview displays the values of many elements it usually arranges all the element
icons on the screen based on the three-dimensional coordinates of the elements. These
coordinates are specified automatically when using the path field option illustrated below,
or using the COORD message when using the message-based display options.

An xview has a superset of the options available to xvar. One of the most important
enhancements is the ability to use “paths” as well as messages for sending values to the
xview. The path field specifies a wildcard list of elements that will send values to the xview.
There are several other options related to the path field, which enable display of subelements
from the path, of messages connected to the path, and so on. These are illustrated in the
Orient tut tutorial (Chapter 18), and discussed in some detail in the reference manual.

The xview happens to be ideal for building a very useful display feature, which I illus-
trate here:�

���������
	�������3� 0
�
��7�� �@C����E��C������ ��������������"�

���������
	�������� � 0
�
��7������������ �@�E�������4���� !���4���� �"$#% 	 '&�(% C % 	�+��	� *�%�- '&�(% C %�- +��	<C	

�
��7���� 0

�
��7�� ���;&�(�������

���������4/��1 (=����������7 �
�
��7���� 0

�
��7�� �D � % ��� � �

�
��

���������
	 �/&���� � 0
�
��7������������;���+& ��� % �+&�����+�����

�
��7���� �/&����,#% 1���� 5 �

�
��7���� 0

�
��7�����1��������!��" % �/&���7�� 	 % ����7 �=� �)+��	 �@��" ����� 0 ���0 ����1	 0 5 ��� � 0

�
��7��

Voila! you have just constructed a colorscale. Try loading in other colorscales to see what
they look like:

	
�
��7���� 0

�
��7�� 5 ���0 ����1

394 Chapter 22. Advanced XODUS Techniques: Simulation Visualization

cell

The xcell pix, like the xview pix, is dedicated to displaying a lot of values at the same
time. It is highly specialized for displaying cells, that is, compartmental models of neurons,
where each compartment is assigned a diameter and position in three-dimensional space.
The reader is referred to the reference manual and examples for further information.

tree

This pix is used to display, edit, and build simulations in XODUS. Typical uses include ex-
ploring and manipulating the element hierarchy, managing a library of objects, and building
simulations using drag-drop operations. The xtree is related somewhat to the xview wid-
get, in that it uses a set of subordinate xshapes to represent the simulation components it
is displaying. Typically, each class of object is assigned a distinct xshape icon. There are
several aspects to what xtree does:

1. It displays objects or elements graphically. The positioning can be in a tree hierarchy,
or based on the three-dimensional coordinates of the elements, or in a grid, or user-
defined.

2. It displays messages between elements.

3. It manages graphical interface events, especially drag-drop operations, between ele-
ments it displays. In particular, it enables the user to attach script functions to drag-
drops between subsets of elements in the display.

Section 22.6 gives an extended example of a network builder using the xtree pix.

22.5 XODUS Events

At various points, we have mysteriously mentioned events as something to which XODUS
objects respond. To be more specific, events are any user operations that impinge upon the
user interface. In XODUS, all events are mapped onto standard GENESIS actions. Not
all widgets or pixes recognize all events. Some of them (such as labels and forms) do not
recognize any events at all.

All widgets that are sensitive to events have a script field (and a
����� 	 ���� option used

with create) which, as described in previous chapters, executes functions when something
happens to the widget. So far, you have mainly used the default event, a standard mouse
click. In order to select a specific event, one can attach a suffix to the end of the script
function name. For example, we can set the script for the draw widget to respond to a click
of mouse button #2 (the middle button):

22.5. XODUS Events 395

0 �����/&���7��<��������+��������� 0
�
�+&)1��324�

�
5 � �@��C � 5 & 0 �=� 0 +��� 0 � ����������(,C+2

Or, we could have it respond to a double click on any mouse button:

0 �����/&���7��<��������+��������� 0
�
�+&)1��324�

�
5 � � � � 5 & 0 ��� 0 �<��� ���;7��

�
7�&
�
� 2

We can specify multiple functions in the script field, and each can be associated with
any event. Each such function is separated by a semicolon:

0 �����/&���7��<��������+��������� 0
�
�+&)1��,#24�

�
5 �	�@��� ����� �

�
5 � �@���
�7 0 � ����� �

�
5 � �@��C ��C�� ��� 0 ��� ����D+2

Table 22.1 shows the mapping of events to widgets.

Event Action Suffix Widgets
1 Mouse button click B1DOWN etc. none; or d, d1, d2, d3 all
2 Return to off state B1UP etc. u, u1, u2, or u3 toggle
3 Mouse double click B1DOUBLE etc. D, D1, D2, or D3 all
4 Update (internal) XUPDATE Not available all
5 Keypress KEYPRESS k dialog
6 Drag from (called XODRAG y draw/pix

from source widget)
7 Drop into (called XODROP p draw/pix

from dest widget)
8 Drop into (called XOWASDROPPED w draw/pix

from source widget)
9 Script access XOCOMMAND c shape

Table 22.1 Mapping of XODUS events to actions.

22.5.1 Returning Arguments to Script Functions

A very powerful feature of the script-calling syntax is the ability to pass specific arguments
to the function. These arguments are passed in using angle brackets. All widgets that have
a script function can take the ��� ��� ����� argument, usually abbreviated ����� . This returns
the pathname of the widget that called them. In addition, all widgets that have a value field
(or in the case of the toggle widget, a state field) can also pass the value using the �
	
����� ��
(or �
	��) argument. The dialog widget can pass individual keypresses in the �
��� argument.
When one is doing drag-and-drop operations, one needs to keep track of the source and
destination widget and their values. These are identified by the � � � , � � � and the ��� , �
���
argument pairs, respectively. Finally, draws and pixes can all pass coordinate arguments:
����� , ����� and ����� . Most of these are illustrated in the network builder example that follows.

396 Chapter 22. Advanced XODUS Techniques: Simulation Visualization

22.6 Using Advanced Widgets: A Network Builder

As a working example of many of the features we have discussed so far, we will build Netkit,
a skeleton interface for constructing network simulations. At a first pass, you can see how
the various XODUS components work together. At a more advanced level, particularly if
you ever plan to build your own interface, it may be worthwhile to note how the interface has
been modularized. This modular design has been developed for several recent simulation
tools including Neurokit2 and Kinetikit, and will enable you to merge your interface with
these existing ones and make use of some of the powerful tools such as the parameter search
genie. The network builder is designed to do the following operations.

1. Manage a set of prototype cells using an xtree element.

2. Drag prototype cells into an editor window.

3. Double-click on cells to edit them.

4. Click-and-drag between cells to set up connections.

5. Drag cells to a graph window to set up plots.

To avoid cluttering up the chapter with non-XODUS related code, the cell models have
been relegated to Appendix B. Here we only go over the interface-specific portions of the
network builder. If the prospect of typing in all this code (although it is under 150 lines)
is intimidating, you may retrieve it from the Scripts/examples directory of the GENESIS
distribution. The example presented here is organized in a stepwise progression suited to
a tutorial. In the example files, and in real simulations, one would organize it much more
systematically in the form of modules related to specific components of the interface.

22.6.1 The Library Window

To start off, we will set up the library window and the xtree that manages the prototypes. In
this case, the xtree is doing two things of note. First, it is arranging the cell prototypes for
you, by putting them into a grid, i.e., a rectangular array. These prototypes are identified
here using the wildcard path, assuming that all objects of type compartment under the
/proto element are cells. Second, the xtree specifies a function call (create cell, which we
will write later) that will be invoked when the prototypes are dragged into the work window.�

���������
	�������3�����/&����@����� * ��� * ���E� *�* ��"	 0 5 ��� �����/&���
���������
	

�
�������������,�����;&4�=��7=& ���@�����E���4���� ���D��� �"
#

22.6. Using Advanced Widgets: A Network Builder 397

% 	 '&�(% D % 	�+��	<D %�- &�(% � %�- +��	<C�
���������
	��������<�����/&��=��7=& �=��������� % 1=��� 5 2 ��1���������� �	� � ��� �	
��

�
���1=������/��(���"�2 #% �������4+�����$>��+&4�<#%�0

�
�+&�1�� 2

�
��������� �

�
��7�7	� � 9���:<9 ��:89�	=:89 - :/2

22.6.2 Making Prototype Cells

In order to give the library something to display, let us set up a couple of cell prototypes.
First, the excitatory cell. Because there is a lot of uninteresting (at least from a graphical
perspective) code involved in setting up a cell model, we will just load in the cell, using
the make cell function defined in the cellproto.g file. This puts it under the /proto element
which is always created by default.

&�(
�
7 �����

�
��7�7�1�������� ��>+� � � �

�
��7�7 ����� 5 & 0 7������ 0 �

�
��7�7�&�(����8� 1��������

Alternatively, if you can’t find cellproto.g and are eager to proceed, just create a dummy
cell by typing:�

���������
�
��=1=����� +��(�� ��1����������

�
��7�7�

��������� 0 - (
�
5 ��(�� 1����������

�
��7�7���>=7 ��

��������� 0 - (
�
5 ��(�� 1����������

�
��7�7����
	�	
�

��������� 0 1+& � ��>���(���1����������
�
��7�7�����	���(

This will not spike, of course, but for now it will get things started. Now we can set about
turning this into an excitatory cell for our interface. First, we need to use the move command
to rename the cell:

+�����<��1����������
�
��7�7
��1������������

�
��7�7

Now we add some extended fields to the cell to handle user-interface information. The
transmitter field, obviously enough, indicates what transmitter type the cell uses. The
xtree fg req field is a special field name that the xtree widget recognizes, and is used to
assign a color to the cell icon.

�������/&���7��<��1������������
�
��7�7 ������(0 &4��������������/&���7��<��1������������
�
��7�7 	�������� ����> �������0 �����/&���7��<��1������������
�
��7�7 ������(0 &4�������$>=7 � 	�������� ����> �������?>�������(

Well, that was easy enough. Now we make a copy for an inhibitory cell, which is just the
same as the excitatory cell except for the color and the transmitter:�

��1 - ��1������������
�
��7�7
��1�����������&

�
��7�70 �����/&���7��<��1����������=&

�
��7�7 ������(0 &4���������
	�	
8	�������� ����> �������
������(�>��

398 Chapter 22. Advanced XODUS Techniques: Simulation Visualization

Where, you might ask, are the cell icons that the xtree widget is supposed to display? The
widget needs to be explicitly told to go and update its contents, using the call command to
invoke its RESET action:�

��7�78�����/&4����7=& �;��������� ��
���
	�
Now we have a couple of cells in the library. They get assigned a nice boring rectangular
icon by default; this is the shape child element you would have seen if you did an “ ��� � � � � �� ��	���� ”. We can make them appear a little more interesting by creating an
xshape as an icon for them:�

���������
	 0 5 ��1=�<�����;&4�=��7=& �;����������� 0 5 ��1=� % �������;&�(�����	8#% ����7 �=�
�
��=1=����� +��(�� % 1�&4	���7���> 0 � % 1�&�	���7���> 0

�
#%

�
������� 0 � % � � * ��������" �@����� � * �A��" ��� � * �A���A��" % ��������+����� �+&�7�7�����7 -�

��7�78�����/&4����7=& �;��������� ��
���
	�
Well, I only said a little more interesting. If you feel creative, you can put any fanciful
shape you like to act as an icon for the cells. Note that the xtree widget uses the value field
of the xshapes to decide which object classes the xshapes are meant to represent.

22.6.3 The Work Window

The next step is to set up the work window. In this case, the tree uses the geometry treemode,
which displays elements according to their position in space. There are two function calls
handled by this tree element. First, it calls a function to edit the cells when they are double-
clicked (edit cell). Second, it handles repositioning of cells in space by click-and-drag
operations (move cell).�

���������
	
�
�������������,�����;&4�=���=��� � �@��� *�� 7=& � ���4���� �� * �"
#% 	 '&�(% � % 	�+��	 � %�- &�(% � %�- +��	 ��

���������
	��������<�����/&��=���=��� � ��������� % 1=��� 5 2 ��(����=� � � ��� ��
��
�
�4�1�������;��(���"�2 #% �������4+�����$>�����+����� - #%�0

�
�+&�1�� 24���/&4���

�
��7�7 � �89���:�� +����� �

�
��7�7	� �<9���:89 ��:,9�	�:<9 - :/2�

��1 - �����/&4����7=& �;����������� 0 5 ��1�� � �F"
�����/&4�=� �=��� � ���������
We are almost ready to do the first of our Netkit operations: dragging cells from the

library into the work window. We just need to write the create cell function which the
/edit/lib/tree widget will use:�

���������$(=� ��������7 � (=��������� 5 �
(=���
�
��7�7 0 �����

�
�����������8��(,����1�������(=�������(

�
�+&���(

�
��������� �

�
��7�7������ 0 � � 0 �

�
����7 � 	�� -��0 ���,��� 0 � � 0 �

�
����7��7������ 	 � -���	��� � � 0 ����� � 5 ���<� 5 �<��� 0 �+&�(����+&���(�& 0 � 5 � �=��� � ��&)(������& �
��� 0 ���

�
�1����� 0 ��� 2 �����/&��=���=��� � 2�� ����� �

22.6. Using Advanced Widgets: A Network Builder 399�
��1 - � 0 �

�
����7 � � (=��� % �������;&�(�����	1�� 0 &4�+& ��(� ��	 � � - � ��

��7�78�����/&��=���=��� � � � �	
���
����(����(��
Note the use of the wildcard symbol “

�
” so that the RESET action will be called for

all elements directly below /edit/work. This is all you need in order to drag the prototype
cells from the library into the work window. Go ahead and try it! If you list the child
elements of /net, (type “ ��� �� � � ”) you will see all the cells you have created, which of
course correspond to the ones visible in the work window.

By now you should have dragged in enough cells to clutter up your work window, so it
is time to write a little function that lets you reposition them. This function is very similar
to the last one.

����(
�
�+&���($+����� �

�
��7�7��A��� 0 � � 0 �

�
����7E�@	!� - �0 ���,��� 0 � � 0 �

�
����7��7������ 	 � -���	��� � � 0 ����� � 5 ���<� 5 �<��� 0 �+&�(����+&���(�& 0 � 5 � �=��� � ��&)(������& �
��� 0 ���

�
�1����� 0 ��� 2 �����/&��=���=��� � 2�� ����� �1�� 0 &4�+& ��(� 0 �

�
����7 � ��	 � � - � ��

��7�78�����/&��=���=��� � � � �	
���
����(����(��
22.6.4 Editing Cells

At this point, the cells you have created are just colored triangles in the work window. To
make them a little more useful you have to be able to edit their fields. This requires three
things: a parameter editor window, a function to update parameter values, and a function
that calls up the parameter editor when a cell is double-clicked. In addition, there is a utility
function set named field whose purpose is obvious. None of these functions is particularly
exciting, so I present them without further comment.

����(
�
�+&���($+� � � ��	����/&4���

�
��7�7�

���������
	����������1=����+���/&��=�
�
��7�7 � * ����� * ����� * ���E��� * ��"�������/&���7��8��1=��� +���/&4���

�
��7�7 ��7��1=��� 5 % ��� 0

�
�/&�1��+&���(�2F1=��� 5 ���<��7�E21�� 0 5 �8��1=����+���/&��=�

�
��7�7�

���������
	��;&���7���>$(=�4+� % �+&��=7���2����4/�+2�
���������
	��;&���7���>
� ������� � (��4+��� * �� !��D���"
#%�0

�
�+&�1��32 0 ��� � (=�4+��� ���/&���7��
9 �;:89��=:/2�

���������
	��;&���7���> �� � * �� !��� � (=�4+�E� * �� !�AD���"$#%�0
�
�+&�1��32 0 ��� � (=�4+��� ���/&���7��
9 �;:89��=:/2�

���������
	��;&���7���>�&�(� �
�
� %�0

�
�+&�1���2 0 ������(=�4+�������/&���7��$9��;:<9��=:/2

400 Chapter 22. Advanced XODUS Techniques: Simulation Visualization�
���������
	�����������(���� �
��	
 ���� !��� � &�(� �

�
� � * �� !��D���"
#%�0

�
�+&)1���2������ ��1�������� �

�
��7�7=&�(����/2�

���������
	�����������(6 � ��
 � * �� !��� � &)(� �
�
�!� * �� E��D���"$#%�0

�
�+&�1��32)	 5 & ���8��1=����/���/&4�=�

�
��7�7/21=��1=���(��� ���������$(=� ��������7 � 1=����+���/&4�<���
1;7��

�
� 5 ��7������ ����� 1=�����4����;&4����� 0+� � � ��	����/&4� �

�
��7�7?��� �

�
���=��7�7 - +� � � � 5 �

�
��7�7$1=�����4 ���/&4�����

����(
�
�+&���(0 ��� ��(��4+�������/&���7���� ��&���>����!� ����7 ��� �0 ���8�+& ��>����!� ����7 ���0 ������7� � ��>������/&���7�� ����&4��>���� ���	� � ��7�=1=��� 5 �0 ���,�;&���7�� ���>������;&���7�� � ��& ��>���� � (=�4/� �0 �����/&���7�� ����7� � ���/&���7���� ������7��=� ���(��

����(
�
�+&���(<��� � ��1�������� �

�
��7�7=&F(����0 ���

�
��7�7 � ��>������/& ��7��8��1�����+���;&4�=�

�
��7�7?��7�=1=��� 5 �0 �����/&���7��8��1=��� +���/&4���

�
��7�7���(��4/� ����7 �=� �

�
��7�7 �0 �����/&���7��8��1=��� +���/&4���

�
��7�7��
 ����7 ��� ��>������;&���7�� �

�
��7�7 �
 �0 �����/&���7��8��1=��� +���/&4���

�
��7�7�� � ����7 ��� ��>������;&���7�� �

�
��7�7 � � �0 �����/&���7��8��1=��� +���/&4���

�
��7�7��=&)(� �

�
� ����7��=� ��>������/&���7�� �

�
��7�7 �,&�(� �

�
� ���(��

����(
�
�+&���(,���/&4� �

�
��7�7�� �����

�
�0 ���<�����

�
0 �����/&���7��8��1=��� +���/&4���

�
��7�7 ��7��1=��� 5 �������

�
������ ��1�������� �

�
��7�7=&)(����	 0 5 ���=��(�����1<� 1=����+���/&4�=�

�
��7�7��(��

Now you should be able to double-click on any of the cells and get a window with
the vital statistics of the cell. If there is any interface-related lesson to be learned from this
editor function, it is that the boilerplate code, which does really boring and basic stuff, takes
up more space than all the interesting code put together.

22.6.5 Connecting Cells

To prove my last point, here we set up the function that does the far more interesting oper-
ation of connecting cells. First, the function itself:

����(
�
�+&���(

�
��(�(=�

�
� �
�
��7�7 0 �
�� � �0 ���
!� ������ 0 > ��
�������	���(� � ��� ��>������;&���7��	��
 � ������(0 '&4������� � ��� ����

22.6. Using Advanced Widgets: A Network Builder 401�
��7�78�����/&4�����=��� � � � �	
���
����(��

Then we set up the work tree to invoke the connect function. The arguments here
include source and destination paths, valid message types and destination element types, a
color for the arrows (which this particular tree does not actually have to deal with), a couple
of flags, and then three script functions that are called in different situations. The syntax for
the following example is explained in gory detail in the GENESIS Reference Manual.�

��7�78�����/&4�����=��� � ���������
 � � �����
��	������24��(=���=� ��� � ��� ��
��
�
�4=1�������+� (���"+2 #2 � (=���=� �	� � ��� �	
��

�
��=1�������+� (���"�2 ��7�7

�
�4=1=������+��(��$>�������(�<�,#2

�
��(�(=�

�
� �
�
��7�7 0 � 1 9 ��:89���:/282�2,2�2

There is a little complication here. In most situations, one would use a single tree to
display elements, call functions to set up interconnections, and display the interconnections
as arrows. If that were the case, we would be done by now. In this example, however, we
want to interconnect cells, but the actual messages are between the axon and synapse child
elements of the cells. So we create another xtree to display the messages as red arrows, and
change its default shape icon to draw points so that it doesn’t clutter up the screen.�

���������
	��������<�����/&��=���=��� � ����������� 0 % 1=��� 5 2 ��(=����� � ��"�� ��� ��"�2 #% �������4+�����$>�����+����� - #% (��4+�4+����� 2F(=��(=�+2 #% 1+&4	���7���> 0
��

��7�78�����/&4�����=��� � ����������� 0
 � � �����
��������<#��7�78��7�7 ��7�78��7�7
�����<���32�2<2�282�20 �����/&���7��<�����/&4�����=��� � ��������� � 0 � 0 5 ��1�� �@��"?��������+����� ������� ���;&�(�� 0
Now you can connect cells by the simple operation of clicking on cell A, and dragging it
onto cell B. A red arrow appears between the two to represent the connection.

22.6.6 Plotting Cell Activity

By now you have a skeleton simulation builder, but it doesn’t actually do anything! One
possible way of watching what the simulation was doing would be to put an xview widget
in the work window as well, and use colors to represent cellular activity. Here, though, we
will draw graphs instead. All we need to do is set up a graph window, and write a function
to generate a graph when a cell is dragged from the work window into the graph window.
Drag in a few cells to see how it works.�

���������
	�������3��>�����1 5 � *�* �E����� * ����� * ����"�
���������
	�>�����1 5 ��>�����1 5 ��>�����1 5 % 5 >����4 �4���� %�- '&�(% � �F� %�- +��	<� � C * #% 	 '&�(,� % 	�+��	,� � *,%�- ����� 0 ���<� �F� * #%�0

�
�+&�1�� 24������� 1;7���� � 1<9 ��:;2	 0 5 ��� ��>�����1 5

402 Chapter 22. Advanced XODUS Techniques: Simulation Visualization

����(
�
�+&���(,��������1=7���� � 0 �

�
�0 ��� 0 �

�
0 ��� 0 �

�
(=�4/� � ��>������/&���7�� � 0 �

�
�?(=�4+� ���32 �/2?#

� ��>������/&���7�� � 0 �
�
� &)(�����	 ���32 � � E2�

���������
	�1=7����,��>�����1 5 ��>�����1 5 � � 0 �
�
(=��+� � % 1�&4	���7���> 0 ������ 0 > � 0 �

�
� ��>�����1 5 ��>�����1 5 � � 0 �

�
(=��+� � � � � ��#

� ���� 0 �
�
(=��+� ��� ��>������;&���7�� � 0 �

�
�$	�������� ����> ������� �

� 0 �
�
7��
�
� ��>�����1 5 ��>�����1 5 � � 0 �

�
(���+� � C��(��

22.6.7 Running Netkit

Almost everything is in place now. We still need to set up a few basic simulation parameters:0 ���
�
7��
�
� � * ��� % 8���8� * � � 0 �

�
�+& +� 0 ����10 ���

�
7��
�
� �,�4� % D0 ���

�
7��
�
� C,� �@C�� % D

If you want a quick preview, you can do the following:��� 0 ���0 ����1�� � *,% �+& +�
To round off the network builder, let us put in a control panel as a final amenity. As with
the cell parameter editor, this is also boring old boilerplate code.����(

�
�+&���(��1�������� ���+& /�0 �����/&���7��8�

�
��(�������7��

�
�������/& /� ����7 ��� ��>���� 0 ����� % �/& +� ���(��� ���������
	�������3�

�
��(�������7 ��������� * �������4����"�

���������
	�����������(��
�
��(�������7�� 0 ������� �@�������AD�D� !��D���" #%�0

�
�+&�1�� 2 0 ����1�� � *,% �+& +�+2�

���������
	�����������(��
�
��(�������7������ 0 ��� �@� � 7�� 0 � �����AD��� !��D���"$#%�0

�
�+&�1��
��� 0 ����

���������
	�����������(��
�
��(�������7�� 0 ����1 ��� � 7�� 0 � ������D�D� !��D���" %�0

�
�+&�1�� 0 ����1�

���������
	��;&���7���>,�
�
��(�������7��

�
�������+& /�$#% 7����=��7 2 ����������(�� �+& +� � 0 �

�
� 2 % ����7 �=� ��������

�
�+& ��(,�

�
��(�������7��

�
�������+& +� ����� �	
�� � ��1������������+& +�

� 0 �
�
7��
�
� �

�
��(�������7�� � ��

���������
	�����������(��
�
��(�������7������+&4� %�0

�
�+&�1�� ����&4�	 0 5 ��� �

�
��(�������7

And that is it for our network builder example. If you have correctly followed the steps
outlined above, you should be rewarded with a display similar to that shown in Fig. 22.1.
As promised, you now have a simulation-builder interface that manages a set of prototypes,
uses click-and-drag operations for creating cells, connecting them and graphing them, and
gives you access to your cell parameters.

22.6. Using Advanced Widgets: A Network Builder 403

Figure 22.1 The display produced by the completed Netkit example. The general simulation controls are
located in the upper left-hand corner. The edit window, containing the draw widgets for the library and work
areas, is below them. The library widget contains icons for the excitatory (ecell) and inhibitory (icell) cell
prototypes. The work widget contains the actual network. The graph widget is displayed on the upper right,
and the parameter editing window (currently displaying the excitatory cell in the network) is below this. The
simple network illustrated here has an inhibitory cell firing at its basal rate, connected to an excitatory cell that
is being driven by 50 pA of injected current.

22.6.8 Extending Netkit

The version of Netkit you have just written is a very limited one, although it does a remark-
able amount for under 150 lines of code. Although the tutorial format of the example blurs
the organization somewhat, it should be apparent that the interface can be rather neatly
divided into the general interface modules (like the edit and graph windows) and the com-
ponent modules that handle the cell-specific operations of prototyping, interconnection and
parameter editing. If you wanted to add an entirely new module, say, a module for de-
livering a repetitive stimulus, you would simply have to add a file with the functions for
these three operations. This organization is clearly visible in the Netkit example files in the
GENESIS distribution. The structure of the code should make it fairly clear how it could

404 Chapter 22. Advanced XODUS Techniques: Simulation Visualization

be extended:

1. There are obvious enhancements to the overall interface, such as a save and restore
option, more control over simulation parameters such as clocks and the run time, and
so on.

2. There are a whole slew of other network components that are not represented, for
example, stimulus objects, globally applied neuromodulators, and so on. Each of
these could be built up in the same sort of framework used for the single cell module.

3. The editing interface for the cell is presently very limited. There are a lot more
parameters one might wish to change, such as the channel kinetics, synaptic weights,
etc.

4. This leads towards a fundamental question: how should this network builder interface
be linked into other related interfaces? For instance, for making and editing the cell
prototypes one would want a complete neuron-building interface such as Neurokit,
and for hooking together populations of cells perhaps we need yet another level of
network interface.

I leave this example with these little “exercises for the reader.” The objective is not
so much to lure you into an endless exercise in improving Netkit, which will probably be
carried out by dedicated hackers long before you read this chapter. It is rather to get you
thinking in terms of interfaces as modular constructs, and to see how the building blocks of
XODUS can themselves be lumped into larger prefabricated modules that slot together to
make pretty powerful interfaces.

22.7 Interface vs. Simulation

The most important part of an XODUS interface is the simulation. We have already stressed
modularity in building an interface. The first step towards this is keeping the simulation and
the interface separate. This applies both to the GENESIS code (scripts) that sets up the sim-
ulation, and to the hierarchy of the simulation itself. In other words, write separate functions
for building the graphics and the simulation, and try to keep your simulation components
on different element hierarchies from your interface components. This is important both
from the viewpoint of managing the code, and also for efficiency. Graphics add overhead,
no matter how efficiently you do them. In fact, graphics can easily consume more computer
resources than the simulation itself. There are a few key points to keep in mind to minimize
this overhead:

22.8. Summary 405

1. Although it may seem strange advice in a chapter on interfaces, one of the first things
you are likely to want to do once you are in “production mode” with a simulation is to
turn off the interface. This is a good reason for keeping the interface and simulation
separate!

2. Use slow clock rates for the graphical components. You rarely need to keep tabs on
values more often than once in a hundred or so numerical time steps.

3. Use messages for passing data to widgets if they are being updated continuously.
The draw, plot, dialog, var, view and cell widgets can all use messages as well as
script value assignments. Messages are the native construct for shunting information
around in GENESIS and are much faster than script-based updates. Messages are
also readily parallelized in GENESIS, which may be important when you decide to
run your simulation on multiple machines.

22.8 Summary

In this chapter you have met a menagerie of widgets, with a few examples for the simpler
ones. We have seen how mouse and keyboard operations relate to actions and functions
in the simulator. We then worked through the Netkit example where we saw several of
the widgets in action, and learned about some basic design principles for XODUS-based
interfaces. Beyond all this, the chapter has also had a hidden agenda, which may have been
obvious to you. It is to persuade you to take the leap from learning about simulations, and
trying out other people’s models, to building your own. Having come this far, you have been
exposed to a spectrum of neural simulation lore, ranging from theory and basic physiology
to the specifics of GENESIS simulation objects. These are all just tools. Now go ahead and
use them.

406 Chapter 22. Advanced XODUS Techniques: Simulation Visualization

