Chaptee 13
Simulating a Neuron Soma

DAVID BEEMAN

13.1 Some GENESIS Script Language Conventions

In the previous chapter, we modeled the simple passive compartment shown in Fig. 12.1.
The membrane resistance Ry, is in series with a leakage battery E g, and is in parallel with
a membrane capacitance Cn, and a current source linjet. Assembled into a script, the com-
mands used would look something like the listing shown in Fig. 13.1. Note the use of “//”
for comments. Multi-line comments may be entered by bracketing the commented lines
with “/*” and “x/”, as in C. This script also illustrates the use of the backslash character,
“\”, in order to continue a statement (the second addmsg command) to another line. This
will be useful when entering lengthy setfield commands.

In this chapter, we choose cell parameters that are typical of a neuron soma. We will
then add voltage-dependent sodium and potassium ion channels to the compartment. Future
chapters extend this to a complete multi-compartmental model of a neuron. The necessary
background for understanding these sorts of models may be found in Part | of this book.

13.1.1 Defining Functions in GENESIS

As with any programming language, the GENESIS script language allows you to define
functions in order to make your programs more modular and easier to modify. These func-
tions should be grouped together at the beginning of the script, preceding any statements
that use them. Because we will begin by modifying the simple compartment used in the
previous chapter to make it look more like a neuron soma, it is a good idea to rewrite the

215

216 Chapter 13. Simulating a Neuron Soma

//genesis - tutoriall.g
// create a parent element
create neutral /cell

// create an instance of the compartment object
create compartment /cell/soma

// set some internal fields
setfield /cell/soma Rm 10 Cm 2 Em 25 inject 5

// create and display a graph inside a form
create xform /data

create xgraph /data/voltage

xshow /data

// send a message (PLOT Vm) to the graph
addmsg /cell/soma /data/voltage PLOT Vm *volts *red
addmsg /cell/soma /data/voltage \

PLOT inject *current *blue

// make some buttons to execute simulation commands
create xbutton /data/RESET -script reset

create xbutton /data/RUN -script "step 100"

create xbutton /data/QUIT -script quit

check // perform a consistency check for each element
reset // initialize each element before starting the simulation

Figure13.1 A GENESIS script to simulate a simple compartment with current injection.

script to use functions for the creation of the soma and the graph. The general form of a
function in GENESIS is

function <function_name>(argl, arg2, ...)
typel argl
type2 arg?2
type_1lvl local_varl

<commands>

end

13.1. Some GENESIS Script L anguage Conventions 217

Here, the data types are one of int, float or str. As in C, arguments are passed by value. An
example of a GENESIS function would be:

function print_area(length, diameter)
float length, diameter
float area
float PI=3.14159
area = PI*diameter*length
echo The area is {area}
end

The command
print_area 5 5

should produce an output something like
The area is 78.5397

If you would like the result formatted to show fewer significant figures, try generating
the usage statement for the floatformat command, or use the help command to get further
information.

Note that when a GENESIS function is invoked, its arguments are given as a list, sep-
arated by spaces (the command line form), rather than as a list in parentheses separated by
commas (the function call form).

This example also illustrates how one sets the value of a variable (P1) at the time that
it is declared, as well as the use of braces (“curly brackets”). The predefined GENESIS
function echo prints out its list of arguments to the screen. The braces around “area” cause
it to be evaluated to the value represented by the variable area, rather than the string of
characters “area”. The following statements both produce the same output:

echo The area is {area}
echo "The area is "{area}

In the first statement, the function echo has four arguments. In the second, it has only one
argument. The only time you may omit the braces when a variable name is to be evaluated
is when it is used in an arithmetic expression. Thus, the following two statements are
equivalent:

area
area

PIxdiameter*length
{PIxdiameter*length}

218 Chapter 13. Simulating a Neuron Soma

This is a point of much confusion among beginning GENESIS programers, so it would be
a good idea to experiment with writing some simple functions that evaluate and echo the
values of variables. Some further examples are given in the GENESIS Reference Manual.

Once you feel comfortable writing GENESIS functions, copy your script to a new file,
tutorial2.g, and modify it so that a function is used to create the soma compartment. For
maximum generality, define a function makecompartment that takes an element path name
as an argument. Then, the command “makecompartment /cell/soma” should create the
soma compartment beneath the parent element /cell and set the internal fields. Also write a
function make_Vmgraph to create and show the graph for Vm with its associated form and
buttons. Once you have completed these changes to your script, verify that the simulation
still works as before.

13.2 Making a More Realistic Soma Compartment

13.2.1 Some Remarks on Units

The internal fields used in GENESIS elements have no implicit units. In the statement
“setfield /cell/soma Rm 10 Cm 2 Em 25 inject 5”, the Rm, Cm and Em fields
could be in ohms, farads and volts. On the other hand, their values (10, 2 and 25) are
of magnitudes that might more appropriately be expressed in kilohms (KQ), microfarads
(uF) and millivolts (mV). The choices for these units will determine the units of time
and current. Any inconsistency in the units that are used can result in confusion as well
as incorrect results! One way to keep confusion to a minimum is to stick to SI (MKS)
units. This is the approach taken with the Neurokit program and its associated prototype
libraries of cell components. Unfortunately, quantities typical of cells tend to have either
very large or very small values when expressed in Sl units. For this reason, many people
prefer to use physiological units. This approach was taken in the MultiCell, Neuron and
Squid simulations. Table 13.1 may help you to keep the units straight. In this book, we
stick to Sl units.

Once having settled upon a consistent set of units, we need to find a way to determine
the cell parameters, membrane resistance (R,), membrane capacitance (Cy,) and axial resis-
tance (Ry) for a compartment of given dimensions. In order to specify parameters that are
independent of the cell dimensions, specific units are used. For a cylindrical compartment,
the membrane resistance is inversely proportional to the area of the cylinder, so we define
a specific membrane resistance Ry, which has units of Q- m?2. The membrane capacitance
is proportional to the area, so it is expressed in terms of a specific membrane capacitance
Cwm, with units of farads per square meter. In future chapters, compartments are connected
to each other through their axial resistances R,. The axial resistance of a cylindrical com-
partment is proportional to its length and inversely proportional to its cross-sectional area.
Therefore, we define the specific axial resistance R to have units of Q-m.

13.2. Making a More Redlistic Soma Compartment 219

Quantity Sl units physiological units

resistance ohm (Q) kilohm (KQ = 103Q)
capacitance farad (F) microfarad (uF = 10~°F)
voltage volt (V) millivolt (mV = 10-3V)
current ampere (A) microampere (LA = 10~5A)
time second (sec) millisecond (msec = 10~3sec)
conductance siemen (S=1/Q) millisiemen (mS = 10~3S)
length meter (m) centimeter (cm = 10~?m)

Table13.1 Correspondence between S| and physiological units for common quantities used in neural mod-
eling.

For a compartment of length | and diameter d we then have

Rm = (13.1)

Cm= TldCy (13.2)
4R

Ra= FZA (13.3)

13.2.2 Building a “Squid-Like” Soma

Our goal is to build a cylindrical soma compartment that has the same physiological prop-
erties as those of the squid giant axon studied by Hodgkin and Huxley (1952d). We will
make our soma smaller, with both the length and diameter equal to 30 um, but will use the
same specific resistances and capacitances. (Note that when the length and diameter are the

same, this will have the same surface area as a spherical soma.)
Therefore, we will begin our modification of the script by declaring and setting some
global variables at the very beginning, before the function definitions:

// soma parameters - chosen to be the same as in SQUID (but in SI units)

float RM = 0.33333 // specific membrane resistance (ohms m~2)
float CM = 0.01 // specific membrane capacitance (farads/m"2)
float RA = 0.3 // specific axial resistance (ohms m)

// cell dimensions (meters)
float soma_l = 30e-6 // cylinder equivalent to 30 micron sphere
float soma_d = 30e-6

We also need to set some potentials. Considering the outside of the cell to be at zero
potential, the resting potential inside the soma should be at —70 mV. For consistency

220 Chapter 13. Simulating a Neuron Soma

with the notation used in many GENESIS scripts, we call this variable EREST_ACT. In
many simulations, this would be the value of E,, the “battery” in series with the membrane
resistance. However, Hodgkin and Huxley found it necessary to set E, to a leakage potential
E|eax that compensates for current flow through other channels (such as chloride channels)
which were not explicitly taken into account in their model. E e is Set to a value that
results in no net current flow when the cell is at EREST_ACT. This results in E;gy being
10.6 mV more positive than EREST_ACT. Although we will add the ion channels later, now
is a good time to define and set the sodium and potassium equilibrium potentials, which we
will call ENA and EK. The script should now contain the additional statements

float EREST_ACT = -0.07 // resting membrane potential (volts)
float Eleak = EREST_ACT + 0.0106 // membrane leakage potential (volts)
float ENA = 0.045 // sodium equilibrium potential
float EK = -0.082 // potassium equilibrium potential

Once these variables have been declared and initialized, modify your makecompartment
function to take additional arguments for the compartment length, diameter and rest poten-
tial. It should then set the Em field to the rest potential and calculate and set Rm, Cm and Ra
using RM, CM, RA and the compartment dimensions. (As we are not connecting this com-
partment to another through its axial resistance, the value of Ra is irrelevant. Nevertheless,
we might as well give it the correct value.) As we would like to make this function general
enough to use for creating a dendrite compartment later, the inject field should be set after
the function is invoked, rather than being set within the function definition. An appropriate
value of the injection current for this simulation is 0.3 nA, so we should be able to create a
soma with fields set to the proper values using the statements

create neutral /cell
makecompartment /cell/soma {soma_l1} {soma_d} {Eleak}
setfield /cell/soma inject 0.3e-9

Before we can plot the results of the simulation, we need to be sure that the graph
/data/voltage is properly scaled. The deceptive simplicity of the previous simulation stems
from the fact that the parameters were chosen so that the voltages and times fell within
ranges that were consistent with the default values of the fields xmin, xmax, ymin and ymax
for the xgraph object. These values may be inspected with the command

showfield /data/voltage -a

or

showfield /data/voltage xmin xmax ymin ymax

13.2. Making a More Redlistic Soma Compartment 221

Likewise, the setfield command can be used to set these fields. When we later add
voltage-activated ion channels to our model, we will expect to see action potentials that
extend from slightly below the resting potential to a slightly positive value. A reasonable
time scale to observe a few action potentials would be about 100 msec. In order to make
it easy to modify these ranges, we can define some local variables in the make_Vmgraph
function and modify the relevant part of the script to look something like this:

float vmin = -0.100

float vmax = 0.05

float tmax = 0.100 // default simulation time
create xform /data

create xgraph /data/voltage

setfield ~ xmax {tmax} ymin {vmin} ymax {vmax}

The caret symbol (“~”) is a convenient shorthand to refer to the most recently created
element. We could also have used

setfield /data/voltage xmax {tmax} ymin {vmin} ymax {vmax}

As the vertical scale is no longer appropriate for the plotting of the injection current, you
should delete the line that sets up the message to plot the inject field. Once these changes
have been entered and you have successfully loaded the script with no reports of syntax
errors from GENESIS, click the left mouse button on the RUN button. Were the results what
you expected? They probably were not.

13.2.3 GIGO (Garbage In, Garbage Out)

It is now time for a step in the construction of this simulation that has been delayed for far
too long. Before performing any sort of computer simulation, you should analyze the situ-
ation and try to predict the main features of the results. Afterwards, look at the simulation
results with a critical eye in order to resolve any differences between what you see and what
you expected. If the results of the simulation are not what you expect, it is time for more
thought. Either your understanding of the processes occurring in the system is incorrect (or
incomplete), or there is something wrong with the program. In the former case, these sorts
of surprises provide one of the main motivations for performing “computer experiments.”
By finding explanations for these unexpected results, we have used the simulation to in-
crease our understanding of the system. In this case, the flat horizontal line seen in the Vi,
plot is an indication that we have neglected something important.

The GENESIS command “help compartment | more” will remind you of the equiv-
alent circuit that we are modeling and the differential equation that is being solved. The
on-line help shows a circuit diagram and an equation that are equivalent to Fig. 2.3 and
Eqg. 2.1.

222 Chapter 13. Simulating a Neuron Soma

The diagram reveals that the current linjes flows through Rp, to create a potential dif-
ference that is in series with E,. (It also shows a variable channel conductance Gy and its
associated equilibrium potential Ey but we have not added the ion channels yet.) Without
the ion channels or adjacent compartments, it should be a simple matter for you to calculate
the steady-state value of Vp,. In this case, the equivalent circuit is reduced to that shown in
Fig. 12.1, and Eqg. 2.1 becomes

dv, Em—V,
Cm m:(m ’“)+|m,-ea. (13.4)
dt Rm

Initially, Vi, will equal Ey,, and the steady state will be reached after a time given roughly
by the time constant for charging the membrane capacitance, T = RyCrp. You should now
give the command “showfield /cell/soma -a” in order to inspect the values of these
quantities and make some rough calculations. (HINT: You should conclude that Vp, will
level off at about —0.024 V, with a time constant of about 0.0033 sec. If your results are
significantly different, you should check the way in which you calculated R, and Cp, from
Rm and Cy.) The problem with our simulation seems to lie in the time dependence. Rather
than asymptotically reaching the final value of Vi, over the 100 simulation steps, we reach
it after the first step.

Perhaps you have anticipated this result. The simulator has performed a stepwise nu-
merical integration of a differential equation over 100 time steps. However, there has been
no mention of the time interval used for each integration step. The section in the GENESIS
Reference Manual on clocks discusses the commands getclock, setclock and useclock. One
may specify up to 100 different clocks that have their time steps set by a command of the
form “setclock <clock># <stepsize>”. For example,

setclock 0 0.001

Clock number 0 is the global simulation clock that we need to set. The default step size
is 1.0 in whatever units we are using. This was fine for the time scale that we used in the
previous chapter, but is clearly much too large for the present simulation. When designing
simulations, you will need to give some thought to the issue of picking an appropriate
simulation step size. To some degree, this will be determined by experiment. As a starting
point, you should pick a step size that would allow you to draw a smooth curve if you were
to make a “connect-the-dots” type plot of the most rapidly varying variable at each time
step. If the step size is adequately small, decreasing the size should produce no change in
the results. Of course, using too small an integration step can needlessly slow down your
simulation and become a source of round off error. As a practical consideration, you might
have to decide what is a “tolerable” amount of difference from the ideal.

You can experiment with different step sizes by interactively issuing the setclock com-
mand to the GENESIS prompt. If you vary the step size, it will be more convenient for you
to specify an amount of time for which the simulation should run, rather than a number of

13.3. Debugging GENESIS Scripts 223

steps to be performed. Fortunately, this may be accomplished by using the -t ime option of
the step command. Modify the statement that creates the RUN button to read

create xbutton /data/RUN -script "step "{tmax}" -time"

Notice the use of spaces within the quotes. This prevents the command step from
running into the value of the variable tmax. Likewise, the space before the option string
“~time” separates it from the time value. If you have any doubts as to whether the string
is being parsed correctly, use the showfield command to examine the script field of the but-
ton. In this case, it should evaluate to “step 0.1 -time”. Often it is easiest to avoid the
complexities of building up a command string in this manner by defining a special-purpose
function to do the job. For example:

str tmax = 0.1 // define a global variable for the run time

function step_tmax
step {tmax} -t
end

function make_Vmgraph
create xbutton /data/RUN -script step_tmax
end // make_Vmgraph

Although indiscriminate use of global variables in a program or simulation script should
be avoided, the use of the step_tmax function with a global variable tmax lets you easily
change the run time for the simulation. Can you think of an easy way to change the time
scale of the graph whenever you change tmax?

Once you have found a satisfactory step size, set the simulation clock to this value
within your script. You should now have a properly running (but boring) simulation of a
passive soma compartment with no voltage activated channels. In the next chapter, we will
add some ion channels in order to create action potentials. However, we will first offer some
suggestions for tracking down errors in GENESIS simulations.

13.3 Debugging GENESIS Scripts

The GENESIS SLI provides descriptive error messages for most errors in syntax. For ex-
ample, a misspelling in the line in Fig. 13.1 that creates the soma compartment might cause
it to read

224 Chapter 13. Simulating a Neuron Soma

create compartement /cell/soma
You would then receive the messages

<tutoriall> line 7

** Error - could not find object ’compartement’
unable to create ’soma’

<tutoriall> line 18

** Error - addmsg : cannot find element ’/cell/soma’
<tutoriall> line 19

*% Error - addmsg : cannot find element ’/cell/soma’

Notice that two additional errors occurred because the first one prevented /cell/soma from
being created. At some point your simulation scripts and their bugs will become complex
enough that the interpreter will not recognize the exact error and will abort the simulation
with only a message to the effect that a syntax error has occurred. In other cases, the scripts
will be syntactically correct and will execute, but will produce obviously incorrect results.
The interactive nature of the SLI makes it easy to track down the point at which the
simulation went astray. For example, the le command will let you know how far you got
in creating the simulation elements before a fatal error was encountered. The showmsg
command will let you see whether the desired linkages were set up between these elements.
The listglobals command will list the names and values of any variables or functions that
had been declared. If everything seems to be in place and properly connected, then use step
to single step through the simulation, and use showfield to see if the element fields are being
set to the proper values. As with any programming language, you may embed temporary
print (echo) commands at critical points in the program to print out status information.
GENESIS also has a debug command that takes an integer argument to set the debug
level. When used with no arguments, it displays the current debug level. The default is
level 0. For level 1 or higher, most objects produce additional status information. Typically,
increasing the number will increase the amount of information displayed. Unfortunately, a
simulation that runs for more than a few steps may flood you with more output than you
want. Thus, it is best to perform a single step at a time when using a non-zero debug level.

13.4 Exercises

1. In the Neuron tutorial (Chapter 6) the compartment-specific parameters Ry, Ra, Cu
and compartment dimensions are given in physiological units. Using the tutorial,
inspect the parameters and dimensions of the soma compartment and calculate the
values of Ry, Rg and Cry, in KQ and pF.

2. Calculate the steady-state value of Vi, that is expected in this simulation.

