
� �������	��
 ��

Adding Voltage-Activated Channels

DAVID BEEMAN

14.1 Review

In the previous tutorial, we created a neuron soma compartment having the same physio-
logical properties as those of the squid giant axon studied by Hodgkin and Huxley (1952d).
In this tutorial, we will add voltage activated sodium and potassium channels to the soma
by modifying a copy of the script that you produced in the previous tutorial. Before con-
tinuing with this tutorial, you may wish to review the discussion of the Hodgkin-Huxley
channel models in Chapter 4. In other tutorials, we will build upon this to produce multi-
compartmental models of neurons and networks of these neurons. Your script from the
previous tutorial should look something like the listing of tutorial2.g in Appendix B.

A number of conventions have been used in this example script in order to illustrate
some principles of good GENESIS programming style. Any declarations and assignments
of global variables are performed at the beginning of the script, followed by function defini-
tions, and then the main body of the script. Although functions to create XODUS forms and
their associated widgets often tend to be rather specific, it is best to make generally applica-
ble functions whenever possible, as we have done with the makecompartment function. If
a variable is not likely to be used outside a particular function, it should be declared locally
to the function. Of course, the liberal use of comments will make it easier for you or oth-
ers to understand your scripts. Your own script is unlikely to be exactly like this example.
However, if it has diverged too much from this general style, now might be a good time for
a rewrite and “cleanup.” During the course of development of a simulation, hindsight can

225

226 Chapter 14. Adding Voltage-Activated Channels

be valuable. It is best to frequently go back and rewrite early code, rather than continuing
to build upon programs that could have been written more cleanly.

14.2 More Fun With XODUS

In previous chapters, we have learned how to use three XODUS graphical objects, or wid-
gets that are available within GENESIS. These objects (xform, xgraph and xbutton) and
others are well documented in the GENESIS Reference Manual. As you develop more
sophisticated simulations and need to exercise more control over the placement, size and
labeling of graphical elements, you will want to read about the many options that can be set
when these elements are created.

For example, the default title appearing on the graph (���������) may be changed by us-
ing the 	�

��
���� option when the graph is created. The labels on the buttons were set by
default to the name of the xbutton element. Usually you can choose an appropriate name
to correspond to the label you want, but you may gain additional flexibility by setting the
onlabel and offlabel fields. Typing “ ���
��������������
�������
�
���� �"!#����� ” will give you a list
of the fields that you can set to modify the appearance of the buttons. You may also wish to
change the size and location of the form and the elements contained within it. For example,
the $�%�&�%�' and $�(�) buttons could be placed side by side. It would also be a good idea to iso-
late the control buttons to a “control” form like those appearing in many of the simulations
we used in Part I of the book. If we remove the control buttons from the Vmgraph form, the
make Vmgraph function will be more versatile and can be used in other simulations that we
create.

The following statements illustrate some ways in which we could change the layout of
a form called /control that contains the control buttons we have used so far.

*,+�-�.0/�1�23-54�6,7�8�9�.323-�/�:�2�;
.0:�8�6,/�8=<�*�2,:�4?>�.323-�/�:�2�;A@CBEDGFIH�DJFIK�H�DGFLBLM�HON
.0:�8�6,/�8=<�;,63P�8�;Q>�.32�-�/�:�2�;O>�;O63P�8�;SR0T�U�8�2E4VHODWR�P�U?.0X�63-WR�;O63P�8�;VY[Z�\3]�^O_�\,`=a�bO]�c�`�Y
.0:�8�6,/�8=<OPO+�/�/�23-W>�.323-�/�:�2�;�>3_�c�d,c�^eR�f�U�8�2[4Vg�gOh R�i�.0:�1[j�/k:�8�i38,/
.0:�8�6,/�8=<OPO+�/�/�23-W>�.323-�/�:�2�;�>3_,l�] R�<�U�8�2E4VDnmo_�c�d,cO^pR3X�U�8�2[4VDqmr;O63P�8�;kR�f�U�8O2E4Vg�gOhps
R�i�.0:�1Lj�/ti0/�83j�93/�4�6,<

.0:�8�6,/�8=<OPO+�/�/�23-W>�.323-�/�:�2�;�>�u0l�vE^kR�<�U�8�2E4VDnmo_,l�]WR3X�U�8�2E4VDqmr;,63P�8�;kR�f�U�8�2E4Vg,M�hWs
R�iO.0:�1[j�/ew,+�1E/

<�i[T�23ft>�.323-�/�:�2�;
83-�x

The horizontal and vertical positions and the width and height of an XODUS widget
are specified by the four geometry fields xgeom, ygeom, wgeom and hgeom. These fields
may be set at any time with the setfield command. You may also set them when the wid-
get is created, by using the options 	��������O! , 	�y������O! , 	��������,! and 	O�������O! . The first line

14.2. More Fun With XODUS 227

illustrates a shorthand notation for specifying these four options. The four numbers in the
square brackets represent the four geometry fields for the form, measured in pixels. For
xform elements, positions are measured relative to the upper left-hand corner of the screen.
In this case, we’ve given the form some extra height to save room for widgets that we might
want to add later. You may want to experiment a bit to find the best size for your forms.
One way to do this is to use the mouse to resize a form that you have created (usually by
clicking and dragging the mouse on the icon at the right end of the form’s title bar). Then
use showfield to find the resulting geometry.

For other widgets, positions are measured relative to the upper left-hand corner of the
form that contains them. If these aren’t specified, they are set by default to be at the left-
hand side of the parent form and just below the previously created widget. The default
width wgeom is the width of the parent form. Each type of widget has its own default
height hgeom.

The second line creates another type of widget, the xlabel. It is simply a rectangular
box containing a string of text. It performs no action when you click on it. As only the
hgeom field was specified when the label was created, it will have the width of the form
and will be just below the top of the form. It will be 50 pixels high and will have the label
“ ����)�'�$���������)�%	� ”. The option “ 	���� ��y���� ” sets the background of the label to a color that
will clash nicely with the default colors of the other widgets. You might want to experiment
with other color schemes! You may do this interactively for the various widgets by using
setfield to set the bg field.

A percent sign may be used after a number to indicate that it represents a percentage of
the screen or form dimension. This is used to create a $�%�&�%�' button that is 33% of the width
of the form. The statement that creates the $�(�) button illustrates another way to specify a
position. The notation “ 	��������O!�

� $�%�&�%�' ” indicates that the button is to be placed 0 pixels
to the right of the $�%�&�%�' button. The option “ 	�y������O!�

�C�����
��� ” means that it will be
placed just below the label. What would happen if this specification were omitted? Note
that as we suggested in the previous chapter, we have used a step tmax function to run the
simulation for a time tmax.

After removing the lines in make Vmgraph that create these buttons and adding some
extra “bells and whistles,” your function might look like

*,+O-�.0/�1�2�- 4�6,7�8�9���4�U�:�6�j�T
*�;,2�6,/���4 1L-��WROD�� BED�D
*�;,2�6,/���4�63<��pD�� DOH
.0:�8�6,/�8=<�*�2,:�4 >,x�63/�6 @ K���DGFrH�DGFIg�HODGFIg�H�D,N
.0:�8�6,/�8=<�;,63P�8�;k>,x�6,/�6�>�;,63P�8�; R�T�U�8�2[4 BEDOhps
RO;O63P�8�;tY[d�2E4�6=f�1E/,Tp]�6 6�-�x��pZ,T�6�-�-�8�;�i�Y

.0:�8�6,/�8=<�UO:�63j�TW>,x�6,/�6�>���2�;3/�6,U�8=R�T�U�8�2E4���D,htR3/�1E/�;O8VY ��8E4�P�:�6�-�8 a�2,/�83-�/�1�6�;�Y
i383/�*�1�8�;3x"!$#3l�-�1E/�iki�8�.&%3l�-�1E/�i'��2�;3/�i
i383/�*�1�8�;3x"!S<04�6,<�(3/�4�63<*) X�4 1[-"(��04 1[-+) X�4�6,<�(���4�6,<�)

228 Chapter 14. Adding Voltage-Activated Channels

<�iET�23ft>,x�6,/�6
83-�x

In this example, the default title has been replaced with a more descriptive one. In addi-
tion, the internal fields of the xgraph element, XUnits and YUnits, have been set to provide
meaningful horizontal and vertical axis labels. Try modifying your simulation script to use
these new make control and make Vmgraph functions and observe the effect that they have.

The GENESIS Reference Manual describes some other widget fields that you may set
to specify colors, font sizes and alternate labels. Further examples of the use of XODUS
widgets may be found in the various forms.g scripts used in the tutorial simulations from
Part I of this book. The modularity of GENESIS makes it easy to “steal” useful functions
or bits of code from these simulations. For example, the Cable, Neuron, and MultiCell
simulations all contain a script xtools.g. This contains a useful function (makegraphscale)
to pop up a menu for changing the scale of the graphs that are created in their forms.g
scripts. The Squid simulation uses a slightly different function to accomplish the same
thing.

If you prefer, you may leave these details of “prettifying your display” until after you
have learned to add channels to the model. However, we should now spend a few minutes
learning to use another useful XODUS object, the dialog widget. The following statement
creates an element called Injection within the /control form, using the xdialog object.

.0:�8�6,/�8=<�x�1�6�;O2,Up>�.323-�/�:�2�;�>�v[-���8�.0/�102�-eR�;O63P�8�;tY,v[-��O8�.0/�1�2�-�� 6E4�j�8,:�8�i���Y s
R���6�;�+�8kD�� g�8�R �pR�i�.0:�1[j�/ Y3i38,/�9�1[-���8�.0/���f�10xOU�8,/�	�Y

This element consists of a label adjacent to a dialog box in which the user can edit or enter
text. The 	������
��� option is followed by the string used for the label in place of the default,
which would be the name of the element. The backslash “
 ” indicates a continuation of the
create statement to another line. The argument of the 	������O�
� option is the initial value that
appears in the dialog box and is stored in the value field of the element. As with any other
element, this field may be inspected and set with the showfield and setfield commands. In
addition, the value may be edited within the dialog box. When the user hits “Return” while
the cursor is within the dialog box, the value field is set. In addition, this causes the function
used as the argument to 	����O� �3��
 to be executed. Here, set inject is a function that we will
define. (NOTE: it is a common mistake to change the contents of the dialog box without
hitting “Return”. In this case, the old value is still being used.)

The argument of 	������ �3��
 in our dialog box example employs another useful bit of
shorthand. The notation ���#��
�����
�� stands for the widget that is being defined. Thus,

	������ �3��
 ������
����,��������
����#��
�����
����
is equivalent to

14.3. Voltage-Activated Channel Objects 229

	������ �3��
 ������
����,��������
���������
����������3��������
 ����� �
In our example, we would like to define a function that gets the variable stored in the value
field of the xdialog element and uses it to set the inject field of our soma compartment.
The following function takes the name of the xdialog element as its argument and uses the
GENESIS getfield function to return the value of the value field.

� ���J��

����� ����
����,�
�����O
��
����������	�
�O
���
����������
����
 � ������

���������������O!#� �,�������O
�������
 � ������
���

����������
 �����O�
��

����

The getfield function is another useful command for dealing with the internal data fields

of an element. It takes the name of the element and the name of the field as arguments and
returns the value of the field. Thus, the statement

���3�
��������
 � ������

��������
������������
������

����� ����������

would print out the value of the dialog box. Likewise,

����
����3�
������
���������
������������
������

�����
will use getfield to retrieve this value and setfield to set the inject field of /cell/soma. If
you make these changes to your script, you will now be able to change the soma injection
current by using the dialog box.

14.3 Voltage-Activated Channel Objects

GENESIS provides several different types of objects for implementing voltage dependent
ion channels. The hh channel object, which we will use in this tutorial, provides the sim-
plest way to implement the equations used by Hodgkin and Huxley to model sodium and
potassium channels in the squid giant axon. Another object, the vdep channel, may be
linked to vdep gate objects to create channels that have a more general form of the equa-
tions. This latter approach is somewhat slower because messages must be passed between
the separate channel and gate objects. For maximum generality in channel modeling, one
may use the tabchannel or tab2Dchannel object, or a combination of tabgate objects used
with vdep channel objects. The tabchannel, tab2Dchannel and tabgate, which are de-
scribed in Chapter 19, allow the use of tables with interpolation rather than equations to
represent the voltage dependencies. This makes it possible to model channels using exper-
imental data that do not fit the Hodgkin-Huxley form. For serious modeling, we strongly
recommend the use of tabchannel or tab2Dchannel objects. As we will see in Chapters 19
and 20, this is particularly important for accurate simulation of cells containing a large num-
ber of compartments. The GENESIS directory Scripts/neurokit/prototypes contains scripts
that illustrate the use of all of these ways to implement voltage-dependent channels.

230 Chapter 14. Adding Voltage-Activated Channels

14.3.1 The hh channel Object

In the Hodgkin-Huxley model, the general form for the channel conductance is represented
as being proportional to an activation state variable raised to an integer power, times an
inactivation state variable raised to another integer power. The hh channel object calculates
the channel conductance from the equation

Gk � Gbar � XX powerYY power � (14.1)

The hh channel fields in Eq. 14.1 correspond to the variables in Eqs. 4.8 and 4.9. In the
usual Hodgkin-Huxley notation for the Na channel, the activation state variable m corre-
sponds to our variable X , with X power � 3, and the inactivation variable h corresponds to
Y with Y power � 1. The Hodgkin-Huxley K channel activation variable n is represented
by X in our notation, with X power � 4. The K channel has no inactivation state variable,
so we use Y power � 0. As we are using SI units, the constant of proportionality Gbar (g)
should be expressed in siemens (1/ohms).

GENESIS uses the convention that a positive current represents a flow of positive charge
into the compartment, so the current through the channel is given by

Ik � Gk
�
Ek � Vm � � (14.2)

Here, Vm is the membrane potential of the compartment that contains the channel, and the
other variables used in these equations are the names of fields of the hh channel object.
These correspond to the subscripted variables in Eq. 4.2. The field Ek represents the value
of the ionic equilibrium potential, which we will express in volts. Channel elements that are
created from the hh channel object calculate both X and Y by solving differential equations
of the form

dX
dt

� α
�
1 � X ��� βX � (14.3)

corresponding to Eqs. 4.11–4.13. The voltage-dependent rate constants α and β can each
assume one of the three functional forms:

FORM 1 (EXPONENTIAL):

α
�
Vm ��� Aexp

� Vm � V0

B
� (14.4)

FORM 2 (SIGMOID):

α
�
Vm �	� A
 � exp

� Vm � V0

B
��� 1 � (14.5)

FORM 3 (LINOID):

α
�
Vm �	� A

�
Vm � V0 �

�
exp

� Vm � V0

B
��� 1 � � (14.6)

14.3. Voltage-Activated Channel Objects 231

Note that Eqs. 4.23, 4.24 and 4.26-4.29, used by Hodgkin and Huxley to fit the K and Na
channel rate constants, each fall into one of these three forms. The form to be used and
the constants A, B, and V0 are specified for each rate constant by setting the corresponding
fields in the hh channel element. These are:

(α for X): X alpha FORM, X alpha A, X alpha B, X alpha V0
(β for X): X beta FORM, X beta A, X beta B, X beta V0
(α for Y): Y alpha FORM, Y alpha A, Y alpha B, Y alpha V0
(β for Y): Y beta FORM, Y beta A, Y beta B, Y beta V0

14.3.2 Adding Hodgkin-Huxley Na and K Channels to the Soma

In order to simplify the process of setting all these internal fields, we will borrow a script
from the Neurokit library of channel prototypes. The file hhchan.g, which is listed in Ap-
pendix B, defines two functions, make Na squid hh and make K squid hh. These create
the two channels from hh channel objects and set the internal fields to the proper values.
In order to understand how we will use these functions, you should now take a look at the
hhchan.g script.

The fields X alpha FORM, X beta FORM, etc. take integer values (1, 2 or 3) to specify
which form of the rate constant equations to use. For clarity, it is more desirable to refer to
these forms by name, as is done in hhchan.g. In order to allow this, hhchan.g contains the
statements

�,��
 %��+� ��)�%�)�'	���*��� �
�,��
 &����������
	 � �
�,��
 � �O) ����	 �

at the beginning of the script. The contents of the hhchan.g script can be made part of our
simulation by using the GENESIS include command “ �,�#������
�� ���J�3�
��� ” after these def-
initions. This script is found in the GENESIS Scripts/neurokit/prototypes directory. Nor-
mally, the .simrc file in your home directory will set the GENESIS environment variable
“SIMPATH” so that the prototypes directory will be searched when a file is specified for
inclusion. Thus, you may use this or one of the other channel “prototype” scripts without
having a copy in the directory that contains your simulation scripts.

As with any modern computer language, you can make your GENESIS simulations
much easier to understand by breaking them into modules that are combined by the use of
include. For example, large GENESIS simulations often put the graphics functions together
in a script called forms.g, so that it may be included if graphics are to be used, and may be
omitted if the simulation is to be performed in the background with output to files. Although
GENESIS makes no distinction between constants and variables, it is often useful to include

232 Chapter 14. Adding Voltage-Activated Channels

a file with a name like constants.g at the beginning of the main simulation script. This will
contain assignments of global variables, such as ionic equilibrium potentials, which are not
expected to change during the course of a simulation. The MultiCell demonstration in the
Scripts directory illustrates this structure.

As our simulation script will be relatively short, we will only use the one included script
hhchan.g, but will try to keep our global variables and constants together at the beginning
of the script. As we add more graphics-related function definitions, it will be useful to keep
them together in one part of the script, rather than interspersing them with non-graphics
functions. However, looking at the listing for hhchan.g, we see that it makes a necessary
exception to the guideline of keeping global variables together in one place.

After some initial comments, the script defines and initializes some variables (ER-
EST ACT, ENA, EK, and SOMA A) for the membrane resting membrane potential, channel
equilibrium potentials, and the area of the soma. These are needed by the following func-
tion definitions. As this script and the other channel prototype scripts were intended to be
available for inclusion in many different simulations, it makes sense to define the needed
“constants” in these scripts. In the case of hhchan.g, the values of these constants were cho-
sen for a granule cell simulation using Hodgkin-Huxley channels, but with potentials that
are slightly shifted from the squid potentials which we defined in the last tutorial. Thus, it
is important to place the “ �,�#���O��
��?���J�3�
��� ” statement before our own definitions of these
constants, so that ours will prevail. It is also a good idea to put in comments that explain
the necessary order of these statements.

We can understand how these constants and the SOMA A constant are used by looking at
the definition of the function make Na squid hh, which follows some extended comments
describing the hh channel object. The function begins by checking for the existence of an
element called Na squid hh. If this channel doesn’t already exist, one is created and the
internal fields are set with a lengthy setfield command that begins with

����
 � ������
)�� �������J��
��O���

%�� ��%�)���

 �����
���
��� � ��� ���
	��&+� � � �*��

 ��� &

The field Ek is the “battery” that is in series with the sodium conductance. It will be set
to the value (in volts) that we have defined for the sodium equilibrium potential, ENA. In
their paper, Hodgkin and Huxley (1952d) fit Gbar to a value of 120 milli-mhos (mS) per
square centimeter of membrane area. You should verify that if we calculate SOMA A in
square meters, the expression above will correspond to the Hodgkin-Huxley result in SI
units. In your script, use the values that we have given for the soma dimensions, soma l
and soma d, to calculate SOMA A for our cylindrical soma compartment. In doing so, you
are letting this single Na channel represent the composite behavior of the many sodium
channels that would be found in a patch of membrane with area SOMA A. If you have the

14.4. Final Additions and Improvements 233

time (and inclination) you may wish to verify that the values used to set the remaining fields
correspond to those used by Hodgkin and Huxley. You should note, however, that the sign
convention used for voltages by Hodgkin and Huxley is reversed from our modern usage.

The function make K squid hh works in a similar manner to create a potassium chan-
nel called K squid hh. These two channels will be created at the current position in the
hierarchical element tree. For a convenient grouping of elements, we would like to refer
to these channels as /cell/soma/Na squid hh and /cell/soma/K squid hh. The easiest way to
accomplish this is to use the pushe and pope commands to temporarily make /cell/soma the
current working element. We can create the two channels in the proper location by putting
the statements

���J�3�
�
���������������,!#�
!#� ��� ��)�� ��� ���J��
������
!#� ��� � � ��� ���#��
 �����
�
���
�

in the main part of our script, after the statements that create the soma compartment.
At this stage, we now have the two channels, but we have not yet linked them to the

soma. The soma needs to know the value of the channel conductance and its equilibrium
potential in order to calculate the current through the channel. The soma will use this current
as part of its calculation to update the soma membrane potential. The channel calculates its
voltage- and time-dependent conductance using the current value of the soma membrane
potential. As usual, these communication links are established by setting up messages
between the elements. The soma may be linked to the sodium channel with the statements

�

�!q�O�����������������O! ����)�� ��� ���#��
 �����
���������������,!#����� ��)�)�%+� ��� %��
�

�!q�O�����������������O! �
���������������O! ����)�� ��� ���#��
 ����� � ����'�� ��% ��!

You should now add these to your script, along with the corresponding messages for the
potassium channel. Before running the simulation, ask yourself if there is anything else
that needs to be done.

14.4 Final Additions and Improvements

At the end of the previous tutorial, we discussed some guidelines for choosing an appropri-
ate integration step to be specified with the GENESIS setclock command. With no active
channels, this simulation produced a smooth asymptotic increase to a constant value of Vm.
Now that we have added the channels, we expect to see action potentials with a fairly short
rise time. You should therefore use either your knowledge of neurobiology or trial and error
to set the step size to a suitable value.

234 Chapter 14. Adding Voltage-Activated Channels

You should now be able to click on the $�(�) button to produce a sequence of realistic
looking action potentials. With the injection current set at 0 � 3 nA, they should occur at
intervals of roughly 14 msec. You may notice something a little strange about the first few
steps of the simulation, however. Instead of starting at a resting potential of � 70 mV , the
membrane potential starts at about � 59 mV and then becomes more negative. This effect
becomes more obvious if you set the injection current to zero. You would expect to see a
constant Vm of � 70 mV , but the first 10 msec of the simulation show a different behavior. In
general, the initial steps of a neural simulation will not begin with the system in a “natural”
state. One solution to this problem is simply to run the simulation until it reaches a steady-
state behavior before taking data. In our case, it is possible to perform a more realistic
initialization if we understand a few details of the GENESIS reset function and its effect
upon compartment objects and channels.

14.4.1 Use of the Compartment initVm Field

In Sec. 12.5, we have discussed some of the actions performed by GENESIS objects. The
reset command causes each element to perform its own RESET action. For example, this
will cause an xgraph object to clear the graph, unless the overlay field flag is set. If the
element is a compartment object, reset means that the membrane potential Vm will be
initialized to the value of the initVm field of the compartment. We haven’t mentioned this
field before, because it normally contains the same value as the Em field and follows any
changes that are made to Em. Thus, the default behavior is that Vm gets intialized to Em
after a reset. (Remember that Em is the “leakage” battery that is in series with the membrane
resistance Rm in Figure 12.1.) The RESET action for the hh channnel object causes it to
get Vm from any incoming messages and to use it to calculate initial values for the Hodgkin-
Huxley rate constants and the channel conductance Gk. If there were no passive channels
or sources of current other than the channels explicitly added to our model, we would set
the soma Em field to EREST ACT (� 70 mV). As this would indirectly set the initVm field
to the same value, this initial value of Vm would be used to calculate the initial channel
conductances after a reset. These conductances, with the channel equilibrium potentials,
would result in no net current flow into the soma. Thus Vm would remain at EREST ACT
in the absence of any current injection.

In the Hodgkin-Huxley model, the Na and K channels produce a net current flow at
EREST ACT. In order to offset this current, Em is set to Eleak, a leakage potential that
differs from EREST ACT. With the proper value of Eleak, there will be no net current flow,
and Vm will remain at the steady-state value of EREST ACT. However, after a reset, we
want to start the simulation with Vm initialized to EREST ACT, rather than Eleak. This
may easily be accomplished by setting the soma initVm field to EREST ACT after the soma
compartment has been created and Em has been set to Eleak. Once initVm has been set
to a value which is different from that of Em, future changes to Em will no longer affect

14.4. Final Additions and Improvements 235

initVm. (If you later want to have initVm follow changes to Em, just set it to the same value
as Em.) With this final addition to the script, everything will be properly initialized. Your
simulation results should now look like those shown in Fig. 14.1.

You might notice that, even with this change, the first action potential is larger than
subsequent ones. This is not a bug in the simulator or your script, but is a legitimate result of
the Hodgkin-Huxley model. You may wish to experiment with different injection currents
and see if you can explain this behavior.

Figure 14.1 Typical results for the GENESIS simulation of a soma with Hodgkin-Huxley sodium and potas-
sium channels.

14.4.2 Overlaying GENESIS Plots

There is yet another addition that you may make to your simulation if you choose. The
command “ �3�
��� � ������
���
���
�����������
������ 	������ ” reveals that your voltage graph has a field
called overlay that was initialized to zero. As mentioned above, by setting it to a non-zero
value, you may suppress the clearing of the graph during reset. This will allow you to
overplot results using different injection currents, step sizes or other parameters. Although
you can set this field to different values from the GENESIS command line, it would be nice
to toggle it back and forth between zero and one by clicking on a button. As this lesson has
been long enough, we will save the discussion of the XODUS toggle widget for the end of
Chapter 15. If you would like to add toggle buttons to your simulations, you may find the
information you need there, or in the GENESIS Reference Manual.

236 Chapter 14. Adding Voltage-Activated Channels

14.5 Extended Objects

You may encounter GENESIS scripts that use extended objects to create voltage-activated
channels, rather than functions such as those defined in hhchan.g. Extended objects are
created by a newly added GENESIS feature that allows you to use the GENESIS script
language to create your own objects. The starting point for an extended object is an element
or hierarchy of elements created from existing GENESIS objects that have at least some of
the properties of the new object which you would like to create. New fields, message
definitions and actions may then be added to the root element of the hierarchy before it is
converted to an extended object.

For example, you may wish to create a specialized version of the hh channel object
in order to implement a Hodgkin-Huxley potassium channel. Or, you might replace the
function make Vmgraph with an extended graphical object that is appropriate for plotting
membrane potentials. Typically, this would consist of a form, graph and overlay toggle
button linked by messages, and would have the various fields pre-set to appropriate values
for plotting membrane potentials. It might also be convenient to define a compartment
object that can calculate and set its own values of Rm, Cm and Ra from the global variables
RM, CM and RA using the compartment dimensions that have been set in its own len and
dia fields.

As a specific example, let’s create an extended object to represent a “squid-like” Hodgkin-
Huxley potassium channel. When a channel element is created from this object, we would
like it to not only have the fields for the various Hodgkin-Huxley constants (X alpha FORM,
etc.) initialized to the appropriate values, but we would like it to perform some of the ac-
tions that were previously defined in our simulation script. For example, it should be able to
calculate the area of its parent compartment from the compartment’s len and dia fields, and
use these to calculate and set Gbar, without having to previously specify a global variable
SOMA A and variables for the soma dimensions. It should also be capable of establishing
its own messages with the parent compartment, so that we don’t have to do this ourselves
each time we add a channel to a compartment. We illustrate some of these features with
excerpts from the script hhchan K.g, which is listed in Appendix B.

The script begins much like hhchan.g, with the definition of some global constants, the
creation of an hh channel element called K squid hh, and the setting of the various fields.
One difference is that a function is not defined to create K squid hh. Instead, it will be
created by this script, modified, and then converted into a new GENESIS object with the
same name. Also, we will arbitrarily set the Gbar field to zero, as it will be initialized to
the proper value when the channel is created as the child element of a compartment.

Next, we add a new field gdens to the element to hold the conductance density of the
channel, and set it to the default value of 360 S
 m2. This is done with the statements

14.5. Extended Objects 237

6OxOx�*�1�8�;3x ��9�i�w,+�10x�9�T�T U�x�83-�i
i383/�*�1�8�;3x ��9�i�w,+�10x�9�T�T U�x�83-�i g��OD�� D

The addfield command is used not just with extended objects, but may be used any time we
wish to add a new field to an element.

As our new object will be a specific kind of channel, rather than a generalized Hodgkin-
Huxley channel, it is best to protect the Hodgkin-Huxley channel constants from being
inappropriately changed by the user. In fact, it would be a good idea to hide them from
view, so that “ �3����� � ������
 	������ ” will show only fields about which we care. We would
like to be able to inspect the Gbar field, but it should only be indirectly settable by setting
gdens. We set these two different levels of protection using the setfieldprot command with
the statements

i383/�*�1�8�;3x,j�:�2,/ ��9�i�w3+�10x�9�TOT R�T�1Ex�x�83- #,j�23f�8,:�%,j�23f�8,:�#�9O6�;�j�T�6�9���\3_ �Qs
#�9,6�;�j�T�6�93b #�9O6�;�j�T�6�9�� #�9O6�;�j�T�6�9���D #�9�P�8,/�6�9���\3_��&#�9�P�8,/�6�93b s
#�90P�8,/�6�9���#�9�P�83/�6�9���D$%�9O6�;�jOT�6�9���\�_�� %�9O6�;�j�T�6�93b %�9,6�;�j�T�6�9��ps
%�9,6�;�j�T�6�9���D$%�9�P�8,/�6�9���\3_�� %�9�P�83/�6�93b %�9�P�8,/�6�9�� %�9�P�83/�6�9���D

i383/�*�1�8�;3x,j�:�2,/ ��9�i�w3+�10x�9�TOT R3:�8O6Ox�23-�;�X��,P�6,:

The second statement protects the Gbar field, but uses the “ 	������
���� ��y ” option instead of
“ 	��#��

���� ”, so that it will be visible with the showfield command, but will not be settable
with setfield.

Now we need to define a function that extends the SET action of the hh channel object
to also set the Gbar field whenever the gdens field is set. This is accomplished with:

*,+�-�.0/�1�23-���9�i�w,+�10x�9�T�T�9Od3c�^ � 6�.[/�1�20- F *�1�8�;,xGF -�83f ��6�;�+�8 �
*�;O2�6,/e-�83f ��6�;0+�8
*�;O2�6,/ka�v&�pg�� BLM�BEH��
10*��I*�1�8�;3x���� Y U�x�83-�i�Y �
i38,/�*�1�8�;,x ���,P�63:"(�a�v	� (3U�8,/�*�1�8�;,x � � x�106)
� (3U�8,/�*�1�8�;,x � � ;O8�-+)
�E-�8�f ��6�;�+�8)

83-�x
:�8,/O+�:,-pD >�>t1[-�x�1O.36,/�8S/OT�6,/pd,c�^p6�.E/�1�23- 1Oi[-�� /QX�8,/V.32E4�j�;O8,/�8

83-�x

When the setfield command is given, the three arguments action, field and newvalue are
automatically passed as strings. As we would like newvalue (the value used to set the gdens
field) to be a float, we redeclare it here.

This is the first time that we have mentioned the GENESIS if construct so far, although
it also appears in hhchan.g. In the next chapter (Sec. 15.3) we will see an example of an
if-else. In either of these constructs, the word “ � � ” is followed by a space and then a pair
of parentheses that contains a logical expression. If the expression is true, it evaluates to 1
and the statements preceding “ ����
 ” will be executed. Note the use of the two equals signs

238 Chapter 14. Adding Voltage-Activated Channels

(“ � � ”) to represent the logical operator for “equal to,” as distinct from the single sign used
to assign a value. The GENESIS logical operators are similar to those used in C, and are
described in the GENESIS Reference Manual.

In our case, we want our new SET action to do something special if the field being
set is our newly added gdens field. Otherwise, the default SET action of the hh channel
object will take over. Specifically, we want to multiply the new value of gdens by the area
of the parent compartment and use this to set the Gbar field of the channel. Fortunately,
the compartment object has two fields, len and dia, which may be used to hold the length
and diameter of the compartment. Note that the “ � ” in the setfield expression refers to the
working element (our channel) and that the “ � � ” in the two getfield expressions refers to its
parent element (the compartment containing the channel). When the SET action is called,
the channel element becomes the working element during execution of the K squid hh SET
function. This change of working element takes place for all action functions. Also note
that it is not necessary to name the working element with setfield and getfield commands,
so the “ � ” could have been omitted. We also need to be sure that the gdens field itself gets
set to newvalue. This will be done by the default SET action if we indicate that our SET
action function did not set the field directly. We provide this information with the statement
“ ����
������
 ”, which causes the function to return a value of zero.

Having defined a function to implement the new SET action, we next use the addaction
command

6OxOx�6�.0/�1023-���9�i0w,+�10x�90T�T d,c�^ ��9�i�w,+�10x�9�T�T�9Od3c�^

to specify the name of the element (K squid hh), the name of the action that it is to perform
(SET) and the name of the function that implements the action (K squid hh SET).

This will properly set Gbar when we change the value of gdens, but we would like to
properly initialize Gbar when the element is first created. We would also like the messages
that link the channel to its parent compartment to be automatically added when the element
is created. Finally, we should put in some protection to ensure that our new kind of channel
can only be created as a child element of a compartment.

We can accomplish these with a similar function that extends the CREATE action, and
with an appropriate addaction command:

*,+O-�.0/�1�2�- ��9�i�w,+�10x�9�T�T�9,ZO_�c�b,^�c �r6�.E/�102�- F j�6,:�83-�/qF 23P���8�.0/qF 8�;[4 �
*�;,2�6,/ka�v �Wg � BLM�BEH �
10*���� (�1Oi36W.32E4�j�6,:�/�4�83-�/ � �)��
8�.ET�2 ��9�i�w3+�10x�9�TOT54�+�iE/QP�8Q/OT�8t.[T�13;,x 2O*p6V.�2E4�j�6,:O/�4�83-�/
:�8,/O+�:O-pD

83-�x
i383/�*�1�8�;3x � �3P�6,:Ws

(�a�v	� (3U�8,/�*�1�8�;,x � � x�106)
� (3U�8,/�*�1�8�;,x � � ;O8�-+)
� (3U�8,/�*�1�8�;,x � U�x�8�-�i)�)

14.5. Extended Objects 239

6OxOx04
i0U������ Z���b�]�]Oc�` �O7 c�7
6OxOx04
i0U������ ��\,`O^�b �Oc ��4
:�83/O+�:O- B

83-�x
6OxOx�6�.0/�1023-���9�i0w,+�10x�90T�TQZO_�cOb�^�c���9�i0w,+�10x�90T�T�9,ZO_Oc�b�^Oc

Here, we use the isa command to see if the parent element is derived from the compart-
ment object. The negation operator “ � ” is then used so that if the channel’s parent is not a
compartment, an error message will be given and the function will return a zero, indicating
that creation of the element failed. If the test is passed, we go on to calculate and set Gbar
using the compartment dimensions and the default value that we previously established for
gdens. The two addmsg commands are similar to those at the end of Sec. 14.3, adding a
CHANNEL message from the channel to the compartment, and a VOLTAGE message from
the compartment to the channel. The function ends with “ ����
������ � ” to indicate that it was
completed without error.

Finally, we want to turn the K squid hh element into an object called K squid hh.
This is done with the addobject command, which is followed by the name of the object
to be created and then the name of the element from which it was made. This command
also allows options for specifying the name of the object’s author and a description of the
object. These will then appear with showobject, just as with a built-in GENESIS object. In
our example, we have:

6OxOx�23P���8�.0/ ��9�i0w,+�10x�90T�T���9�i0w,+�10x�90T�T RO6�+�/OT�2,:?Y�� � _ ����6�.07�8,:�Y5s
R,x�8�i�.0:�1Lj�/�1�23-tY���2,xOU�7�1[-�R��O+�<�;,8,X b�.0/�1 ��8&�WdOw,+�10xkZ,T�63-O-�8�;kRQd�vS+O-�1E/�i�Y

Now, let’s test the script. Start GENESIS, change to the Scripts/tutorials directory
where hhchan K.g should be found, and give the following commands:

T�T�.ET�63-�9��
;O8
;�1,i0/�23P��O8�.0/�i

Note that the element K squid hh doesn’t exist, but that there is a new object of this name.
Of course, we could have used a different name for the basis element and the extended
object that we created from it. Either way, the addobject command destroys the original
element when the new object is created. Try the commands

iET�23f�23P��O8�.0/ ��9�i�w,+�10x�9�T�T	� 4�2,:�8
iET�23f�23P��O8�.0/=T�T�9�.ET�63-O-�8�;
� 4�2,:�8

What differences do you note? Now try

240 Chapter 14. Adding Voltage-Activated Channels

.0:�8�6,/�8p.32[4�j�6,:�/04�83-�/k>�.32E4�j�/
i383/�*�1�8�;3x >�.32E4�j�/Qx�1�6Qg�D�8�R �p;,83-Wg�D�8�R �
.0:�8�6,/�8&��9�i�w,+�10x�9�T�Tp>�.�2E4�j�/�>��
iET�23f�*�1�8�;,xQ>�.32[4�j�/�>��QRO6�;�;
iET�23f34
i0Up>�.32E4�j�/�>��

How do the results of the showfield and showmsg commands compare with those obtained
for the /cell/soma/K squid hh element in your tutorial script? (You can also load tutorial3.g
without interfering with any of the commands given so far.)

Try setting the /compt/K gdens field to a different value and inspecting the value of
Gbar. What happens if you try to set Gbar directly? What happens if you try to create a
K squid hh element as a child of an element that is not a compartment?

The GENESIS Reference Manual describes some other capabilities of extended objects
that are useful when constructing a compound object from a hierarchy of elements. Nor-
mally, all access to elements of the new object are via the fields, messages and actions of
the root element, and the child elements are not accessible. Although this is usually de-
sirable, there are cases when we want to access some of the fields and messages of one of
the child elements. For example, if the root element is the form that contains the graph for
plotting membrane potential, we would want to be able to add PLOT messages to the graph
and to set the fields that specifiy the ranges for its axes. This may be done with message
forwarding and indirect fields.

The GENESIS Reference Manual also describes the procedure for defining new objects
and GENESIS commands by programming them in C, compiling them and then linking
them into a new version of the executable genesis file. If this procedure is used to create
a new object that has a computationally intensive PROCESS action added, it will execute
more rapidly than one that is created at the script level. Nevertheless, it may speed devel-
opment to make initial tests using an extended object as a prototype. For the example we
have given here, there is little speed disadvantage in using an extended object, because the
script language functions are used only when an element is created, or when fields are set.
The compiled code for the original hh channel object is used during the PROCESS action.

14.6 Exercises

1. It would be useful to be able to modify both the time step dt and the run time tmax
from dialog boxes. Add these features to your simulation and have the x-axis of the
graph adjust to the new tmax.

2. The function make Ca hip traub91 in neurokit/prototypes/traub91chan.g will create
a high threshold calcium channel Ca hip traub91. (Except for the more descriptive
name, this is the same as the Ca channel used in the traub91 tutorial of Chapter 7.)

14.6. Exercises 241

Chapter 19 describes how this channel was created from a tabchannel object. As
with the channels in hhchan.g, we may use it without having to be concerned with
the details of the traub91chan.g script. Copy this file into your directory and include
it in a copy of your simulation script. Then make the changes necessary to add the
channel to your model. In order for it to have a significant effect, you will need to
increase the value of the Gbar field from its default value. What value of Gbar gives
an appreciable “shoulder” to the action potentials?

3. In Sec. 14.2, we mentioned the makegraphscale function. Use this function to add a
��������� button to each of your graphs, so that you may easily change the xmin, xmax,
ymin, and xmax fields.

4. The Squid tutorial (Chapter 4) uses the script squid electronics.g to simulate the cir-
cuitry that is used for voltage clamp experiments. This is accomplished with a combi-
nation of the PID (Proportional, Integral, Derivative controller), diffamp (differential
amplifier), and RC (low pass filter) objects. The GENESIS Reference Manual and
the on-line help provide additional documentation for these devices. Adapt this script
to provide voltage clamp capability for your simulation.

5. Why is the first action potential of the series shown in Fig. 14.1 higher than the
following ones? It may help to revisit the Squid tutorial (Chapter 4) in order to
examine plots of some of the other variables.

6. Make a script analogous to hhchan K.g to create an extended object for the Na chan-
nel. Modify your tutorial3.g script to use extended objects instead of the functions
defined in hhchan.g. Don’t forget to set the len and dia fields of the soma compart-
ment.

242 Chapter 14. Adding Voltage-Activated Channels

