Chapter 16
Automating Cell Construction with
the Cell Reader

DAVID BEEMAN

16.1 Introduction

In the previous chapter, we created a simple multi-compartmental neuron with a dendrite
compartment, a soma, and an axon. The dendrite contained a synaptically activated channel
and the soma contained voltage-activated Hodgkin-Huxley sodium and potassium channels.
The script tutorial4.g, listed in Appendix B, contains the function definitions and commands
used to construct this neuron, provide synaptic input to the cell, and plot the results of the
simulation. In this tutorial, we will modify the script in order to construct the same neuron
from a data file, using the GENESIS cell reader. The cell reader, which is implemented
in the readcell command, allows one to build multi-compartmental neurons by reading
cell parameters from a cell descriptor file. This file contains the names and dimensions
of the compartments that will be used in the cell, along with the names of the channels
and other elements that are contained within each compartment. The cell reader then uses
this information to put together a cell and to establish the necessary messages between the
various elements. This can significantly reduce the effort needed to construct a complex
cell with many compartments and channels.

Before reading further, you may wish to review Chapter 15 and the listing of tutorial4.g
in order to remind yourself of the purpose of the various functions that were defined in the
simulation script. In this tutorial, we will use seven scripts to create the simulation. The
following section describes the use of a script that we will write (protodefs.g) in order to

255



256 Chapter 16. Automating Cell Construction with the Cell Reader

create a library of the basic components to be used in building our cell. This script may use
include to bring in other scripts that define the particular channels or other elements which
we need. In our case, we will use the hhchan.g script that we used in the previous chapters,
plus three other scripts from the neurokit/prototypes directory (compartments.g, synchans.g
and protospike.g). Then, we describe the listing of the cell descriptor file cell.p. Finally,
we will construct a main simulation script tutorial5.g. This will create the various XODUS
elements needed to control and display the simulation, include protodefs.g in order to create
the raw materials for building the cell, process cell.p with readcell to create the cell, and
create any needed external objects and their messages in order to interact with the cell.

16.2 Creating a Library of Prototype Elements

The cell reader builds the cell by making copies of “prototypes” of the various elements
that will be used, replacing the default values of parameter fields with values taken from the
cell descriptor file. For example, when constructing a soma with several attached dendrite
compartments, it will make multiple copies of a generic compartment prototype and then
set the data fields in each compartment to the appropriate values. Likewise, a cell having
Hodgkin-Huxley Na channels in several compartments will get these channels from copies
of the prototype. These channels will be identical, but the cell reader will provide the right
value of the maximum channel conductance Gbar for each copy.

The cell reader expects to find this library of prototype elements as a set of subelements
of the neutral element /library. Thus, we need to write a script that will create /library and
fill it with a prototype compartment, one copy of each of the different channel types we will
use, and a spike generator. Although the statements that are needed to set up the prototype
library could go into your main simulation script, it is customary to make a separate script
for this, and to then use include to bring it into the simulation. Following tradition, we will
call this script protodefs.g, although you may give it any name you like.

16.2.1 Future Changes in the Cell Reader

The cell reader is continually evolving in order to provide more flexibility. In future releases
of GENESIS, more options will be available for the cell descriptor file and new types of
GENESIS objects may be used as components for the construction of cells. In order to be
aware of these new developments, you should consult the current version of the readcell
documentation in the GENESIS Reference Manual.

It is likely that future versions of the cell reader will construct cells from extended
objects instead of the /library prototype elements we have used here. As we have demon-
strated in Sec. 14.5, extended objects can take over many of the duties that are performed
by script commands or by the cell reader, such as establishing messages with their parent



16.2. Creating a Library of Prototype Elements 257

compartments and scaling various fields according to the compartment dimensions. This
will mean some changes in the way that prototypes are specified in the protodefs.g file. The
scripts that are included will typically create extended objects for prototype compartments,
channels and other cell components, rather than providing functions that create elements
from the basic predefined GENESIS objects. As these changes are incorporated into future
releases of GENESIS, they will be accompanied by documentation and example scripts.

Instead of directly creating prototype elements from the basic compartment, synchan
and spikegen objects, we will create them from functions defined in the scripts compart-
ments.g, synchans.g and protospike.g in the neurokit/prototypes directory. Under GENESIS
version 2, this is not strictly necessary. However, by including these scripts, we can main-
tain compatibility with future releases of GENESIS that may have modified versions of
these scripts to go along with changes in readcell.

16.2.2 The protodefs.g Script

We begin by including the script compartments.g, which can create a variety of compart-
ments. As in tutorial4.g, we can include the file hhchan.g in order to provide the functions to
create the prototype Hodgkin-Huxley channels Na_squid_hh and K_squid_hh. We will also
include the scripts synchans.g, which contains a function to create a glutamate-activated ex-
citatory channel like the Ex_channel element we have used before, and protospike.g, which
can create a spikegen element. If the SIMPATH in your .simrc file is properly set to include
the Scripts/neurokit/prototypes directory, these files need not exist in your own directory.
After including the hhchan.g file, be sure to replace its values for EREST_ACT, ENA, and
EK with your own, as we did in tutorial4d.g. As the cell reader will calculate the compart-
ment area from dimensions given in the cell descriptor file, you will not need to specify
these quantities here. At this stage, your protodefs.g might look something like

include compartments
include hhchan

EREST_ACT = -0.07
ENA = 0.045
EK = -0.082

include synchans
include protospike

Of course, your version will contain many illuminating comments!
After the relevant scripts have been included, we can create the library with the state-
ments

create neutral /library



258 Chapter 16. Automating Cell Construction with the Cell Reader

disable /library
pushe /library // Make these elements in the library

make_cylind_compartment /* makes "compartment" */

// Create prototype H-H channels "Na_squid_hh" and "K_squid_hh"
make_Na_squid_hh

make_K_squid_hh

// Make a prototype excitatory channel, "Ex_channel"

make_Ex_channel /% synchan with Ek = 0.045, taul = tau2 = 3 msec */
make_spike /* Make a spike generator element "spike'"*/
pope // Return to the previous working element

You may notice that we have used a new GENESIS command, disable. We don’t want
to waste time having the elements in the library calculate anything, since they exist only to
be copied into the elements that will actually be used in the simulation. When an element is
disabled, the simulator will not attempt to update the fields of it or any of the child elements
in its hierarchy. It may be re-enabled with the enable command.

The function make_cylind_compartment not only makes the element compartment, but
it sets the default values of its fields and adds a new field Shape, which is initialized to
“cylinder”. As with hhchan.g, the script synchans.g uses global variables for the channel
equilibrium potentials. The value for the glutamate excitatory channel Ex_channel is set
with the statement “EGlu = 0.045”. As this is the same as the value we used for the
excitatory channel in Chapter 15, we can leave it as is. However, the two channel time
constants, taul and tau2, are “hard-coded” at 3 msec within the make_Ex_channel function.
Fortunately, these are also the values that we want. If we were to require different values,
we could set them to the correct values right after we create the channel. Finally, we need
to create a spike generator, which will be linked to the soma by the cell reader. As the
make_spike function in protospike.g creates exactly what we want (an element named spike
with a unit amplitude and an absolute refractory period of 10 msec), we will use it here.

Before going on to construct the rest of the simulation, you may wish to test your
protodefs.g file by executing it as a GENESIS script. If you have made no errors, it should
execute without much happening on the screen. However, you may use the le and showfield
commands to satisfy yourself that the proper prototype elements have been created in the
library.



16.3. The Format of the Céll Descriptor File 259

16.3 The Format of the Cell Descriptor File

Our cell will be assembled from the prototype elements in the library according to the
specifications in the cell descriptor file. For our simulation we will use the example file
cell.p, shown in Fig. 16.1. (This is often referred to as a cell parameter file, hence the
required extension, “.p”.) We can best understand the format of this file by going through
the file line by line.

// cell.p - Cell parameter file used in Tutorial #5

// Format of file :

// x,y,z,dia are in micromns, all other units are SI

// In polar mode ’r’ is in microns, theta and phi in degrees
// Control line options start with a ’*’

// The format for each compartment parameter line is :
//name parent r theta phi d ch dens

//in polar mode, and in cartesian mode :

//name parent x y z d ch dens

// For channels, "dens" = max conductance per compartment unit area
// For spike elements, "dens" is the spike threshold

// Coordinate mode

*relative

*cartesian

*asymmetric

// Specifying constants
*set_compt_param RM 0.33333
*set_compt_param RA 0.3
*set_compt_param CM 0.01
*set_compt_param EREST_ACT -0.07

// For soma, use the leakage potential (-0.07 + 0.0106) for EREST_ACT
*set_compt_param ELEAK -0.0594
soma none 30 O O 30 Na_squid_hh 1200 K_squid_hh 360 spike 0.0

*set_compt_param ELEAK -0.07
dend soma 100 0 O 2 Ex_channel 0.795775

Figure16.1 Thecell descriptor fi le for the ssmple neuron model.

When cells are built “by hand,” the [x, y, z] coordinate fields of the compartments are
normally not used, except for graphical display of the cell geometry, or when the coordi-
nates are needed to establish a pattern of connections in a network. However, the cell reader



260 Chapter 16. Automating Cell Construction with the Cell Reader

uses these coordinates in order to determine the lengths of the compartments, and they are
NOT optional. For an asymmetric compartment like that shown in Fig. 2.3, these coordi-
nates are measured at the end that has the potential Vm. Using the option “*relative”
allows one to specify these coordinates relative to the parent compartment without keeping
track of the absolute location relative to the origin of the cell. As we will be using Cartesian
coordinates, the option “xcartesian” is also specified. The “*asymmetric” option need
not have been specified, as it is the default. It tells the cell reader that the various com-
partments will be constructed from copies of the asymmetric compartment in the library
named compartment. If we had specified “*symmetric”, the compartments would have
been constructed from the symmetric compartment prototype symcompartment.

Next, the values of the variables RM, RA, CM, and EREST_ACT are set, using the
“xget_compt_param” option. These are internal variables that will be used by readcell
for values of the specific membrane resistance and capacitance, specific axial resistance,
and resting potential of the various compartments. The cell reader will use the values of
RM, RA and CM to calculate and set the Rm, Ra and Cm fields from the compartment di-
mensions, ignoring any initial values set in the library prototype. Likewise, the Em and
initVm fields are set from the EREST_ACT variable. However, we would like to set the
soma Em voltage to the leakage potential rather than to the resting potential, as we have
done in the previous tutorials. This is done by setting another internal variable ELEAK to
—0.0594 V. After the soma is created, ELEAK is set to —0.07, so that the dendrite Em will
be given the proper resting potential. (Recall that the different value of Em was needed in
the soma to compensate for the current flow through the Hodgkin-Huxley channels at the
resting potential.)

A similar option, “*set_global” has the same effect on the internal compartment
parameter variables as “*set_compt_param”, but also changes the value of the global
script variables of the same name, which must have been previously declared. In addi-
tion, “*set_global” may be used to set the values of other previously declared global
script variables that are not directly used by readcell. In general, it is best to use the option
“xget_compt_param” in order to avoid the use of unnecessary global variables.

The line describing the soma compartment starts out by giving its name (“soma”) and
its parent compartment (“none”). When reading the documentation for the cell reader,
note that the terms “parent” and “children” are used somewhat differently than we have
used them so far. If we have elements /cell/soma and /cell/dend, we would normally refer
to the siblings soma and dend as children of the parent /cell. When this same hierarchy of
elements is created with the cell reader, the documentation refers to the dendrite as a child of
the parent soma, because it is connected to the soma through the dendrite axial resistance.
Thus, the line describing the dendrite (dend) lists soma as its parent, even though it will
create /cell/dend, not /cell/soma/dend. To avoid confusion, we refer to dend as a subelement
of /cell whenever there is any ambiguity.

The soma that we created in the previous tutorials was 30 um long and 30 pm in diam-



16.3. The Format of the Céll Descriptor File 261

eter. If we make our cell lie along the x-axis, that means that we should give (x, y, z, d) as
(30, 0, 0, 30). After the coordinates and diameter of the compartment, we list the channels,
giving the name of the prototype channel followed by the parameter “dens”. For a channel,
this parameter is the maximum conductance per unit area of the compartment. For example,
the function make_Na_squid_hh, defined in hhchan.g, sets the channel field Gbar to “1.2e3
* SOMA_A” siemens. In our previous simulation we were forced to use this “density” value
of 1200, and had to explicitly override the default value of SOMA_A with our own value.
The cell reader provides us with more flexibility, however. The density of 1200 is stated
explicitly in the “.p” file, after the name of the channel, and the compartment dimensions
are used with this parameter to set the value of Gbar when the channel is created from its
prototype in the library. Thus, we need say nothing about SOMA_A in the protodefs.g file.

The spike generator is listed in the same manner as the channels. However, the dens
parameter is used to give the spike threshold. The cell reader will then create the element
[cell/somal/spike, set its thresh field to 0.0, and add the INPUT message from the soma. The
abs_refract and output_amp fields of the spikegen object are not set from the cell descriptor
file. They will take on the values assigned to the prototype, unless these fields are explicitly
set after the cell has been built. As in the previous chapter, we have used values that will
produce a minimum interval (refractory period) of 10 msec between the spikes and give
them a unit amplitude.

Next, we change the value of ELEAK to the appropriate value for the dendrite compart-
ment. If we had wished to use different values for the specific resistances and capacitance,
these parameters could be changed here. Then we give the name of the compartment (dend)
its “parent” (soma), along with its coordinates, diameter and any of its subelements that
need to be linked with messages. The geometrical parameters for the dendrite should be
(100, 0, 0, 2) if it is to be 100 um long and 2 um in diameter. If we were using absolute
coordinates instead of relative coordinates, we would have given the dendrite x-coordinate
as 130.

In the previous tutorial, we gave the synaptically activated dendrite channel a maximum
conductance of 5.0 x 10~1° siemen. Whether or not the gmax field of the prototype channel
Ex_channel was set to this value, the cell reader will set the field of /cell/dend/Ex_channel
to a value calculated from the channel density parameter given here. You should verify that
for the compartment dimensions used here, this results in a density of 0.795775 S/m?, as
given in cell.p

The GENESIS Reference Manual and the help file for the readcell command describe
several other useful options. The “*compt” option is particularly useful for large models.
A detailed cell model may use many compartments that are identical, except for their di-
mensions. These may often contain the same conductances, with the same conductance
densities. In order to avoid the repetition of many identical long strings of channel spec-
ifications in the cell descriptor file, you may use the “*xcompt” option followed by the
name of a compartment in the library. Rather than being a “naked” compartment like the



262 Chapter 16. Automating Cell Construction with the Cell Reader

[library/compartment element which we have used, this would typically consist of a com-
partment and its associated subtree of channels and other subelements, linked with the ap-
propriate messages. Once this option is specified, all following compartments will be copies
of this element tree, with their channel conductances appropriately scaled to the dimensions
of the compartment.

16.4 Modifying the Main Script to Use the Cell Reader

By making use of the two files cell.p and protodefs.g, we can eliminate much of the com-
plexity of the tutoriald.g script. Copy this file into a new one with a different name and
carry out the changes described below.

The cell parameters are either determined from the prototype definitions in protodefs.g
or are read in from the parameter file, cell.p. Therefore all of the statements preceding the
function definitions, except for those that set tmax, dt and gmax should be removed and
replaced by the statement “include protodefs”. Likewise, the function definitions for
makecompartment, makechannel, and makeneuron should be removed. The only function
definitions remaining will then be those that involve the interaction of the cell with the
outside world, the feedback connection and the graphics functions.

In the main script, the call to makeneuron should be removed and replaced by the state-
ment

readcell cell.p /cell

Here, the two arguments specify the name of the cell descriptor file to be read and the path
name of the resulting cell. As in the previous chapters, /cell will be created from a neutral
object.

At this point, you should have a script that is functionally equivalent to tutorial4.g. Try
it out and verify that it works the same as tutorial4.g.

Using the cell reader to build this simple cell hasn’t saved us all that much work, as
we still had to create all the prototype channels in the library and to provide the graphi-
cal interface. For a more complicated multi-compartmental cell, the effort saved could be
considerable. This is because the same prototypes can be used in many compartments. In
addition, the use of cell descriptor files provides a convenient mechanism for the exchange
of cell models with other users of GENESIS.

16.5 The Neurokit Simulation

In this simulation, we still had to write a fair amount of GENESIS script language code in
order to provide for the display of our results. The Neurokit simulation, which is found in
the GENESIS Scripts/neurokit directory, takes us a step further by providing a graphical



16.6. Exercises 263

interface to the cell reader. This makes it possible to build complex multi-compartmental
neurons and to run elaborate single cell simulations without the necessity of writing GEN-
ESIS scripts. The README file that accompanies the simulation gives detailed instructions
for using Neurokit. The next tutorial in this series shows how to implement this simulation
within the Neurokit environment. In Chapter 19, we will learn how Neurokit and the cell
reader are used with calcium concentration-dependent channels.

The subdirectory Scripts/neurokit/prototypes contains a large number of scripts, similar
in format to hhchan.g, for creating a wide variety of channels. As with hhchan.g, these may
be used independently of Neurokit. In order to encourage the exchange of new GENESIS
simulation components, it is strongly recommended that you follow the conventions used
in these scripts. The complete list of available channels may be found in the file LIST in
this directory. In order to easily include these prototype scripts in your own simulations,
include a statement like

setenv SIMPATH {getenv SIMPATH} /usr/genesis/Scripts/neurokit/prototypes

in either your .simrc file or your simulation scripts.

16.6 Exercises

1. In Chapter 7, we used Neurokit to experiment with a model of a burst firing molluscan
neuron. The cell descriptor file mollusc.p in the Scripts/burster directory was used
to create this cell. The file ASTchan_tut.g provides the functions needed to create
the prototype channels and the file userprefs.g contains some statements that you
can include in your protodefs.g file. (The statements at the end of userprefs.g are
for use with Neurokit, and are described in the next chapter.) With these files and a
modified version of tutorial3.g, duplicate the endogenous bursting behavior described
in Sec. 7.5.2.

2. Asavariation of the previous exercise, write a simple simulation to observe the soma
membrane potential of the Traub model CA3 cell, with a current injection of 0.2 nA
to the soma. Experiments with this model are also described in Chapter 7. The
Scripts/traub91 directory contains the files CA3.p, traub91proto.g and userprefs.g,
which you may incorporate into your simulation. Your results should agree with
those shown in the lower plot of Fig. 7.3.



264 Chapter 16. Automating Cell Construction with the Cell Reader




