
� �������	��
 ��

Constructing Neural Circuits and
Networks

MICHAEL VANIER AND DAVID BEEMAN

18.1 Introduction

In this chapter, we demonstrate how to use GENESIS to set up a simple network of biolog-
ically realistic neurons. This will not be a “neural network” in the usual sense of a network
of highly abstract units with no direct connection to biological neurons (such as a back-
propagation network). Rather, the approach we take is to simulate a group of biological
neurons at a moderate level of detail and then connect them in a network. In the process
we discuss a number of GENESIS functions that are used for this purpose, as well as a few
script commands that have not been described earlier in this book. Our examples are taken
from a tutorial simulation called Orient tut, which is a simplified model of orientation se-
lectivity originally written by Upinder S. Bhalla. This tutorial contains several script files,
of which about half deal with setting up the XODUS graphical user interface. We do not
discuss these scripts in this chapter; the GENESIS commands used to set up the interface
are described in Chapter 22, “Advanced XODUS Techniques.” The emphasis in this chap-
ter is on showing you how to use GENESIS commands whose primary purpose relates to
simulation of networks of neurons. Commands that have been discussed in detail in other
chapters are mentioned only briefly here. Another example of a large network simulation
in GENESIS is provided in Chapter 9, on the piriform cortex simulation.

279

280 Chapter 18. Constructing Neural Circuits and Networks

18.2 The Orient tut Simulation

The Orient tut simulation is a simplified model of orientation selectivity in the visual sys-
tem. It is available in the Scripts/orient tut directory in the GENESIS distribution. This
simulation consists of two groups of cells, “retinal” cells and “V1” cortical cells. The reti-
nal cells generate spikes randomly at a rate controlled by the simulation. They in turn make
synaptic contacts with two types of V1 cells: horizontal bar detectors and vertical bar de-
tectors. The simulation allows you to sweep a horizontal or vertical bar pattern across the
“retina.” You will observe that sweeping a horizontal bar across the retina causes the hori-
zontally selective cells in V1 to become activated, whereas sweeping a vertical bar across
the retina causes the vertically selective cells in V1 to become activated. As you will see,
this selectivity results from the specific patterns of connectivity between the retinal cells
and the horizontally and vertically selective V1 cells. The degree of orientation selectivity
is quite weak: occasionally a vertical bar will cause a horizontally-selective cell to become
active and vice versa. The exercises at the end of the chapter discuss ways of improving the
orientation selectivity. One should bear in mind that this is not a very realistic simulation of
the mammalian visual system; for instance, there is no representation of the lateral genic-
ulate nucleus (LGN) and there are no feedback connections within V1. The aim of this
simulation is not to provide a state-of-the-art model of orientation selectivity but to show
in a relatively simple setting most of the commands that are used in setting up network
simulations in GENESIS.

18.3 Running the Simulation

The simulation is started by changing to the Scripts/orient tut directory and typing “ ���������	���
�� ���
��� ����� ”. A graphical display will come up like that in Fig. 18.1. The control panel
is in the upper left corner. This contains various buttons, toggles and dialog boxes, all
of whose functions are explained in the README file for the simulation. For the pur-
poses of this chapter, the most important buttons are the two buttons on the top row, called
�������
� ��� � � and ��������� ��� � �
� . Clicking the mouse on ��������� ��� � � causes a vertical bar
of retinal cells to become active, slowly creeping from left to right, accompanied by some
background firing. You can look at the firing pattern of the retinal cells in the display to the
right of the control panel, under the label �����	������������� � � . You will see squares that flick
from the background color to red and back again; this happens whenever a spike occurs
in the corresponding cell. There are 100 such cells in the display, and they are arranged
according to their x-y coordinates. This part of the display is actually composed of two
XODUS objects called xview and xdraw; see Chapter 22 for details. We refer to such a
display henceforth as a draw widget.

You can stop the simulation by clicking on the ������� button. If you click on the

18.3. Running the Simulation 281

Figure 18.1 The upper portion of the Orient tut simulation display. The window to the right of the control
panel shows the retinal receptor cell array and the two planar arrays of horizontally and vertically selective V1
cells.

�������
� ��� � ��� button, a bar of active cells will creep from the bottom of the draw wid-
get to the top. The outputs of the cells are displayed in a different draw widget, under the
label ��� � � � �
��� ��������� � � . This widget has two groups of 25 squares, representing the 25
horizontally and vertically selective V1 cells (horizontal to the left, vertical to the right).
You can view the value of any of several fields in this widget, but the most useful one (and
the default) is the membrane potential (Vm) of the V1 cells. The Vm field of the cell’s soma
compartment is displayed as the color of the square, with blue being hyperpolarized and red
being depolarized. When a horizontal bar is swept across the retina, observe how a bar of
horizontal V1 cells becomes active and tracks the motion of the bar across the retina. There
will also be some activity in the vertically selective cells, but considerably less. Conversely,
when a vertical bar is swept across the retina, a bar of vertically selective cells becomes
active and tracks the inputs, whereas the horizontally selective cells are much less active.
This result follows from the different connectivity patterns of the horizontally- and verti-
cally selective cells. This can be viewed by clicking on the toggle marked �������	��� �������
� .
This brings up yet another draw widget with three cell displays shown in perspective; the
leftmost one represents the retinal cells, the upper right one represents the vertical cells and
the lower right one represents the horizontal cells. Clicking the mouse on a retinal cell will
show you the projection pattern of that cell in both V1 fields, whereas clicking on a V1 cell
will display the receptive field of that cell in the retinal field. You should be able to figure
out what confers the orientation selectivity upon the V1 layers by looking at the projective
and receptive fields in this way.

For more details on the graphical interface, see Chapter 22 or the README file accom-

282 Chapter 18. Constructing Neural Circuits and Networks

panying the simulation. Now, we will discuss the GENESIS commands needed to set up
the network for this simulation.

18.4 Creating a Network Simulation

The process of setting up a neural network simulation in GENESIS can be divided up con-
ceptually into several stages. First, the basic low-level components of the simulation that
are used to construct cells must be specified. These include compartments, ion channels,
and other elements that may include elements to simulate calcium fluxes, detect when spike
thresholds have been reached, and so on. The second stage is to link these low-level el-
ements into single cells representing the different cell classes to be incorporated into the
model. The third stage is to create arrays of these cells corresponding to the biological
structures being modeled. In our case, this means creating an array of retinal cells, and
arrays of both vertically and horizontally selective V1 cells. In the fourth stage, we connect
the cells in a network, specifying the connection strengths, axonal and synaptic transmission
delays, and all other parameters of the synaptic connections. Then, we create any needed
external inputs to the system. The final stage is to set up the user interface and output rou-
tines that allow the user to run the simulation, view the data being generated, and/or save
the data to disk for further analysis.

Of course, you may not always rigorously follow this order. Usually, you will want to
do some testing and debugging while you are constructing your network. This may mean
providing some input to the system and some graphical display before you have completely
finished stage four. Section 18.7.3 describes some utility functions that will be useful in
debugging network simulations.

The focus of this chapter is on the third and fourth stages (setting up the network)
since other chapters give more details on setting up single cell models and user interfaces.
However, we will first briefly describe the manner in which the Orient tut script files handle
the first two stages.

18.5 Defining Prototypes

In the Orient tut simulation, the prototype elements are defined in the files constants.g and
protodefs.g. The first script defines the values of constants such as the Nernst equilibrium
potentials for the different ion classes (Na, K and Cl), resting potentials, single channel con-
ductances, channel densities, cell dimensions, axonal and synaptic propagation delays, and
so on. In some GENESIS simulations the Nernst potentials are computed by the nernst ob-
ject as the simulation is running; however, since the Orient tut simulation is somewhat less
detailed, the Nernst potentials are assumed to be constant. The protodefs.g script defines the

18.5. Defining Prototypes 283

component elements needed to construct the cells. The different objects used include a ba-
sic compartment object, active Na � and K � Hodgkin-Huxley type ionic channels, synaptic
channels (depolarizing Na � channels, hyperpolarizing K � channels and shunting Cl � chan-
nels), and a spike detector spikegen object. These objects have been described in previous
chapters, especially Chapter 15.

In protodefs.g we create the neutral element /library to store the basic synaptic and
ionic channel types, as well as a basic compartment element and a spike detector (spikegen
element). Then we disable the library using the command “ �����������	�������	� � � � � ” so that
the elements in /library are not simulated during the simulation. The purpose of this is to use
the library elements as templates that can be copied to other places where they will be linked
into the main simulation, as described in Chapters 16 and 17. In this case they will be used
to make prototype cells, which we will copy into the network arrays. Another approach
would be to make the library prototypes into GENESIS extended objects, as discussed in
Sec. 14.5. However, the approach described here is adequate for our purposes.

After protodefs.g has been loaded, all the prototype channels and compartments are
subelements of the /library element. Now we want to use these elements to build up proto-
type cells for the simulation. There are two types of cells: the receptor cells, which can be
thought of as very crude representations of retinal ganglion cells, and the V1 cells, which
represent the synaptic “targets” of the retinal cells. These cell types are defined in the script
files retina.g and V1.g, which we describe next.

In retina.g, a sample “receptor” cell is created in the library. This is not a real cell in
the sense of having compartments or ion channels. It is merely a spike generator that can
be connected to postsynaptic cells in the same way as a cell. Only one object is required
for this: the randomspike object. randomspike is a spike generator that generates random
(Poisson-distributed) spikes at an average rate set by its rate field; for more details, see
Chapter 15.

The retina.g script creates a prototype receptor cell called /library/rec, where library
and rec are both neutral elements. It then creates the randomspike element (random spike
generator) called input in library/rec and sets its average firing rate and absolute refractory
period.

The script V1.g works in a similar manner, building a V1 cell in the library (as /li-
brary/soma). In this case, the base element (/library/soma) is derived from a compartment
object, not a neutral object. We could have made the base element from a neutral object,
but conceptually all the other parts of the V1 cell are connected to the soma anyway, so this
was more convenient. The V1 cell consists of a single compartment (/library/soma) that
is linked to Hodgkin-Huxley Na � and K � channels, excitatory and inhibitory synaptically
activated channels, and a spikegen element, which detects spikes occurring in the cell.

284 Chapter 18. Constructing Neural Circuits and Networks

18.6 Creating Arrays of Cells

Now that we have a prototype receptor cell and a prototype V1 cell, we are ready to create
the retina and V1 arrays. The statement

���������	��
���
����������	�����	���	�������	�������������	�	��
������	������� �!	"�#�$	%&���� �!�"�#�'�% �
(�) �����	� ���� �!	"�*� �+�$�%,�-�� �!	"�*� �+�'�% �
(�. ����/��0� � (�� �!�"�#�$21��� �!	"�*� �+�$ �43 %5� (�� �!�"�#�'61��� �!	"�*� �+�' �43 %

in retina.g is used to make multiple copies of rec and its children into /retina/recplane,
arranging their x-y coordinates on a two-dimensional grid. /retina/recplane is a neutral
element created by the command for the purpose of storing the copies of the receptor cell.
The usage for the createmap command is

���������	��
���
27 .�8 �����) ��7�� #�9�# � (�) �����	�) 9) � (�. ���0/��0� 9
:������
:�0� (�. ��;������
where Nx and Ny are the number of cells on a side in the x and y directions (giving a total
of Nx < Ny cells in all), dx and dy are the physical separations in the x and y directions, and
xmin and ymin give the position of the first element to be created (i.e., with the lowest x-y
values). If the entity to be copied is a GENESIS object in its own right (as opposed to the
base of a tree of elements) you should use the =����?>�� � � option. This is mainly for use with
GENESIS extended objects (see the GENESIS Reference Manual) and is not needed in this
simulation. Here REC NX and REC NY (the dimensions of the receptor cell array, i.e., the
number of cells on a side in the x and y directions) are both 10, and the cell separations
(REC SEPX and REC SEPY) are each 40 < 10 � 6 (meters; i.e., 40 µm — all units are SI
unless otherwise noted).

Thus, the command “ ��� � � ��� � ��� � � � ��� ������� ” gives “
� � �A@CB�=�D�D�E � ”, meaning that it

has created rec[0] through rec[99]. The “ � ” indicates that each element has child elements.
In this case the only child element will be the randomspike element input. The “cells”
rec[0] through rec[99] are neutral elements because all they need to do is to contain the
random spike generator. It would also have been possible to create these copies with the
command “ ����� � � ���	� � � � � � � � � � � ��� ����� � � � � � ������� � � � �A@CB�EF= � �
�������HG�B�B ”. How-
ever, the use of createmap assigns values to the x and y coordinate fields of the elements
corresponding to their locations on the grid. These coordinates will be used not only to
display the cells in a draw widget, but to assign synaptic connections, synaptic weights and
propagation delays.

Occasionally, it might also be useful to specify a non-rectangular geometry for the posi-
tions of the retinal cells. For example, we might wish for the retinal cells to be arranged so
that they fill up the interior of a circular region centered on the origin with a radius of 200
microns. In this case createmap will not work, since it arranges the cells in a rectangular
grid. However, we could write a script function to implement this arrangement as follows:

18.6. Creating Arrays of Cells 285

� 8 ������� . ��
����	� " ������� 8 ����� " ������� ����0���F��� ;
�0�������	�
� . ��
���� (�
�� �����
�� ��� �������
� . ��
 ;�� (�
�� ;����
�� ;	��;������� �
 � � 1 ����; 1 ;�����3
 % �� .
��6�����0���	�������-�	��� �-�	�����0�	�����	���0
��������������	��� � � %��
 . 7������ . �����	�����0�����-�	����
������������	�	��� � � %�� �� 3���� (�� 1 � %�� 3���� (�� 1 ; % �! "�

�	���#���
���)���)���)���)

This function is instructive in that it demonstrates the use of some of GENESIS’ loop-
ing and conditional constructs. Like any modern programming language, GENESIS has a
full range of such commands, including for, foreach, while, if/else, and so on. All such
commands terminate with an end statement. The syntax of these commands is similar to
that of the corresponding C functions (or C shell, in the case of foreach); for full details, see
the GENESIS Reference Manual. In this case the function generates pairs of integers rang-
ing from $ 5 to 5 and tests whether the sum of their squares is less than or equal to 25, i.e.,
whether the numbers are within a circle of radius 5 centered at the origin. If so, a retinal cell
is copied from the library to the /retina/recplane/rec[] array and given x-y coordinates that
are scaled versions of i and j using the position command. The position command, as its
name suggests, sets the position coordinates of an element to equal its last three arguments
(which are x-value, y-value, z-value, respectively). You may wish to check that the above
function does in fact arrange the cells in a circular array with a diameter of 200 microns
centered on the origin.

This function also illustrates another feature of GENESIS programming: if there is no
built-in command to perform a particular task, you can usually write a script function to do
it. If there is a built-in command, however, it is nearly always more efficient (i.e., faster)
than an equivalent script function.

Now we return to the actual simulation. The statement

7&% .(' � �-���) ���	�����0�����-�	����
������������	�	���)� � (�����

reveals (among other things)

9 ��* �+
 (3! "������������� (��,-� (3! "������������� (��,.�/�� "���������������0�����

This means that the x, y, z positions of the cell are ($ 200, $ 200, 0) (in microns). Likewise,

286 Chapter 18. Constructing Neural Circuits and Networks

�	�	��� � � (�(� 9 �0*��
 (�� � ����������� (��,.� (3! "������������� (��, � �! "���������������0��� ��	�	���
 � (�(� 9 �0*��
 �! "���������������0����� (3! "������������� (��, � �! "���������������0��� ��	�	����� � (�(� 9 �0*��
 �� � ����������� (��,.� (3! "������������� (��, � �! "���������������0��� ��	�	���
 , � (�(� 9 �0*��
 (, "������������� (�
 � �! "�������������������.� �! "���������������0��� �
�	�	���
�
 � (�(� 9 �0*��
 �! "���������������0����� �! "�������������������.� �! "���������������0��� �

This shows that all the retinal cells have the same z coordinate (0) but are positioned differ-
ently in x-y space.

In a similar manner, the script V1.g makes 25 copies of the V1 cell in /V1/horiz with the
statement:

���������	��
���
����������	�����	�	7 .
������ ����% . ���&*4�� � � "�#�$�%,� � � "�#�'�% �
(�) �����	� � � � "�*� �+�$�%&� � � "�*� �+�'�% �
(�. ����/��0� � (� � "-#�$21 � � "�*� �+�$ �53 %5� (� � "�#�'21 � � "�*� �+�' �53 %

Executing the command “ �	� ��� G �
��� � �
� ” gives “ ���	� � @ B�=�

��E � ”; again, the final “ � ”
indicates that the array of cells have subelements connected to them. This array is 5 by 5
with spacings of 80 < 10 � 6 m (V1 SEPX and V1 SEPY) in the x and y directions. These
represent the V1 cells selective to horizontally oriented stimuli. A similar statement is used
to create the plane of vertically selective cells (called /V1/vert). All of the cells in both
planes have z coordinates of 0.0. In this case the spatial coordinates of the horizontal and
vertical cells overlap, but this will cause no problems since the two groups of cells can be
referred to and manipulated separately.

At this point we have three arrays of cells, representing the source “retinal” cells, and
the vertically and horizontally selective destination “V1” cells. The next step is to set up
connections between these cells to form a network.

18.7 Making Synaptic Connections

There are two different ways of specifying the nature of connections between cells in GEN-
ESIS. We can individually specify each connection and its associated parameters, or we
can use special GENESIS commands that define and parameterize groups of connections
between groups of elements. The Orient tut simulation employs the second approach, using
the commands planarconnect, planardelay, and planarweight (in the script file ret V1.g).
First, though, we will remind you how we manually set up connections in Chapter 15.
This approach might be feasible in modeling a system with precise connections between
identified cells, such as some invertebrate systems and the central pattern generator circuits
treated in Chapter 8. For larger networks with less precise connectivities, the commands
operating on groups of elements and connections are more appropriate.

18.7. Making Synaptic Connections 287

A synaptic connection in GENESIS is made between a spike generating object (such
as randomspike or spikegen) and a synaptic channel object (such as synchan). Axons as
such are not modeled explicitly (although there is an obsolete axon object that is used in
some older simulations). In general, the somatic compartment of a cell will be linked to
a spikegen object, which will detect when a spike has occurred and pass that information
along to the synaptic channel object. The V1 cells in our case are set up in this way, although
in this simple model the V1 cells are not connected to anything (but see the exercises at the
end of the chapter). Alternatively, a randomspike object can be used to provide randomly
occurring spikes at a given frequency to the synaptic channel object. The retinal cells in our
model are modeled as randomspike objects, and we impose a firing pattern on the retina
by manipulating the firing rates of the retinal cell directly (discussed in Sec. 18.8).

18.7.1 Specifying Individual Synaptic Connections

The connection between the spike generating object and the synaptic object is established
by adding a message between the two objects. For instance, to connect the retinal cell
� � ��������� � � � �����	�
��� � � � �A@ B�E with an excitatory synapse on the cell ��� G � ��� � ��� ���
� � � @ B�E ,
we could use the following command.

�)�)
 7�/����������0�������	����
������������	��� � � � �	����
 8 �,��� ����% . ��� *	��7 .
�� �)� � ��� 9 � " 7���� *�+ ���

Here, the presynaptic element is a randomspike object and the postsynaptic element
is a synchan object, or synaptically activated channel, discussed in Chapter 15. Since the
synaptic connection presumably includes a time delay between the time the spike occurred
and the time its influence is felt on the synaptic channel, due to both the axonal and synaptic
transmission delays, we have to specify that delay explicitly (the default is a delay of 0,
which is not very realistic). Also, the effects of different synapses on their postsynaptic
targets will differ in magnitude. This is modeled by a weight field on the synapse. Assuming
that the above SPIKE message created synapse number 0 on the synchan object, the weight
and delay may be set as follows.

7���� � �-���) ��� ����% . ��� *	��7 .
�� � � � ��� 9 � " 7����47����	��
�7�� �)� � ' ����/�%���3! �6�7�������
�7�� � � �) ���������0� (,
for a weight of 2 � 0 and a delay of 0 � 1 msec (10 � 4 sec). It should be emphasized that
synaptic “weight” is a dimensionless field: a weight of 1 � 0 means that a single spike will
cause a conductance change with a maximum height of gmax, the “maximal” conductance
of the synapse. However, a weight of 2 � 0 will cause a conductance change that is twice as
large. Thus, the gmax field in the synchan object refers to the maximal conductance of the
channel when the synaptic weight is 1.0.

To make things even easier on us, we could alternatively write a script-level command
to set up synapses as follows.

288 Chapter 18. Constructing Neural Circuits and Networks

� 8 ������� . ��
����	��7�������
�7-��

��	� �
 . 7���� ' ����/(%����) �����-� �7����
��	���
 . 7��
� � . ��� ' ����/�%����) ��������0��� 7���� " � 8
�)�)
 7�/ �
��	� % �
 . 7�� %&*�+ � � 7���� " � 8
�� � /	��� � �-���) �
 . 7�� % ��7�������
�7���7 % (�7���� � �����) �
 . 7�� % 7�������
�7��!� � 7���� " � 8
 %�� ' ����/(%�� � ' ����/�%�� % �7����	��
�7�� � � 7���� " � 8
 %(�) ������� �) ������� %���)

When we add a SPIKE message, the last synapse corresponds to the message just added.
We have to set nsynapses to (nsynapses $ 1) since synapses are numbered starting with 0.
Once this function is defined, setting up a synapse is as easy as typing:

��(�	��7����	��
�7��,���	�������������	�	��
������	���-�	�	��� � � �	�0��
 8 �,��� ����% . ���&*	�	7 .
�� � � � ��� 9 � " 7���� �3! "� ��� (,

We’ve just shown you how to set up synapses individually in GENESIS. However, in
any reasonably sized network simulation, it would be extremely tedious to set up all the
connections in this way. We could use a for loop along with the makesynapse function
defined above, but there is an easier way. GENESIS includes several commands that can be
used to set up large numbers of synapses all at once, thus simplifying the process of setting
up network-level simulations. This is the approach taken in the Orient tut simulation, and
is described next.

18.7.2 Commands Involving Groups of Synapses

Connecting Groups of Synapses

The connections between the retina plane and the two V1 planes are made in ret V1.g with
statements like:

������������ . ���������4���	�����0�����-�	����
������	���-����� � � ������
 8 � �
��� ����% . ���&*	�	7 .
�� � � ��� 9 � " 7���� �

(�	�����������	� �
(7 .�8 ���-��
���7 � � . 9 (� (� � � �
(�) ��7��-
���7 � � . 96� (� � "�*� �+�$61 3�), % � (� � "�*� �+�'�1 �! � % �� � � "�*� �+�$61 3�), % � � � "�*� �+�'61 �! � %

The purpose of this rather complex command is to connect a region of identical elements
to another region of identical elements (the elements of the second region are not necessarily
the same kind of elements as those of the first region). The planar in planarconnect refers
to the fact that the source elements are viewed as lying in a two-dimensional plane. Since

18.7. Making Synaptic Connections 289

GENESIS objects can have three-dimensional locations, this means that only the x and y
dimensions are used in this command. The command is intended to be used for elements
located in a two-dimensional sheet with a constant z value, which is true for objects created
with the createmap command described above. The full usage for this command is:

������������ . ���	�����47 .�8 ���-� " �����0
�������7) ��7����0������� . � " ������
��-����7 �
� (�	�����������	� � � ���&����������� �	� . ������7 . � 8 �	��� . ����������� . � "
 .�) �
(7 .�8 ������
���7&� � � . 9 � �������0
�7-� % � ���4�������0
���������� . ���	�	���	����/ 8 �������	��/�� . �9 � � � 9 3&�	36� ���&������/	� . � 7 .�8 ��������������7
� (7 .�8 �����(% . ��� � � . 9 � �������0
�7-� % �9 � � � 9 3&�	3 � � ���&������/	� . � 7 .�8 ��������������7 � . �5� . � . �����	���
(�) ��7���
���7 � � � . 9 � �������0
�7-� % �9 � � � 9 3&�	36� ���&������/	� . �) ��7����0������� . �6�������	7
� (�) ��7���% . ��� � � . 9 � �������0
�7-� % �9 � � � 9 3&�	3 � � ���&������/	� . �) ��7�� �������	7 � . �5� . � . ���������
� (
�� . ����� ���	������
 � ���,
�� . ��������������� . �
������0��/2� . �����	����� . �

Incidentally, notice that in GENESIS commands that span several lines and that are con-
tinued using backslashes (

�
) you can include comments after the backslashes. The empty

brackets (rec[] and soma[]) indicate that all of the spikegen elements in the retinal cells
(i.e., /retina/recplane/rec[0-99]/input) will be connected to the synchan elements in
/V1/horiz/soma[0-24]/exc syn. “ = � � ����� � ��� ” means that the (x, y) coordinates of the desti-
nation elements will be measured relative to those of the source elements. The default is to
use the absolute coordinates of the destination elements. The =��
��� � ���	� ����� option speci-
fies the range of source elements to connect, as either a rectangle (box) in the x-y coordinate
space of the elements or an ellipse. For a rectangular (box) region, the coordinates x1 and
y1 refer to the minimum x and y values of the rectangular region, and the coordinates x2 and
y2 refer to the maximum x and y values of the rectangular region. For an elliptical region,
x1 and y1 are the coordinates of the center of the ellipse whereas x2 and y2 are the lengths
of the principal axes in the x and y directions, respectively. The curly braces mean you have
to choose one or the other of � box, ellipse � .

In this case, the coordinates = GF=:G G G for the sourcemask span a region far larger
than the total extent of the source region (2 meters square), so that all source elements will
be connected. You can specify multiple source regions by specifying several lines of the
form =����
� � ��� � ������� ��� �	� � � ����� �
�
� � G � G �
 �
 . The =����
� � ������� �	� option indicates
a range of elements not to connect; this is useful when you want to connect all elements
in a rectangular region except for some inside the region (see below for examples). Again,
you can specify multiple “holes” if you want. The = ����� � � ����� and = ����� ����� �	� options
similarly specify the coordinates of the destination elements. Finally, the = � � � ��� � � ���
���
option specifies the probability of connections, which is 1 � 0 by default (all elements in
the source region(s) specified are connected with all elements in the destination region(s)
specified).

290 Chapter 18. Constructing Neural Circuits and Networks

The way this works in practice is as follows. GENESIS looks at the list of source
elements and rejects those not in the source region. For each source element within the
source region, it scans the list of destination elements and picks out those whose position is
in the destination region (measured either in absolute coordinates or relative to the specific
source element, if the = � � �	�����
��� option has been selected). Then it makes a synaptic
connection between the source and destination elements. If the =
� � ������� � ��� ��� option has
been selected the connection will be made with the given probability, so not all possible
connections will be made.

Confused? Here are some examples. First, say we wanted the source region to consist
of all the rec cells except for a rectangular region of 20 microns square in the middle, with
the destination cells the same as above. Then you would use the command:

������������ . ���	�����&���	�������������	�	��
������	���-�	�	��� � ������
 8 �,���� ����% . ��� *	��7 .
�� � � ��� 9 � " 70��� �
(�	�����������	� � ���6� .�. �) �0�����	��7
�����7 8 ���)�' ���F7 .�8 �������������	7
(7 .�8 ������
���7&��� . 9 � ���&�	�����	����/ 8 �����,����/�� . �
(� (� � � � ���&�	����/	� . � 7 .�8 ���-�,�	��/�� . � (�(�������������	7
(7 .�8 �����(% . ����� . 9 � ���&�	�����	����/ 8 �����,����/�� . �
(3���� (��4(3���� (�� 3���� (�� 3���� (�� � ���&�	����/	� . � 7 .�8 ���-��% . ���
(�) ��7���
���7 � � . 9 �� (� � "�*� �+�$51 3!), % � (� � "�*� �+�'�1 �! � % �� � � "�*� �+�$�1 3!), % � � � "�*� �+�'21 �! � % ��� ������/	� . �) ��7��5����/�� . �

Alternatively, say we wanted to have two destination regions for the connections be-
tween the receptors and the vertically selective V1 cells, one of which includes all the cells
whose x coordinates are between 10 and 20 µm less than the receptor cells’ x coordinates
and one of which includes all the cells whose x coordinates are between 10 and 20 µm more
than the receptor cells’ x coordinates. Also suppose we wanted to exclude a circular part of
the source region centered at the origin and 20 µm in diameter, but otherwise include all the
source cells. Then we could write this:

������������ . ���������4���	�����0�����-�	����
������	���-����� � � ������
 8 � ���� ��� �	�������	7 .
�� � � ��� 9 � " 7���� �
(����������� �	� �����6� .�. �) �0�����	��7
�����7 8 ���)�' ���F7 .�8 �������������	7
(7 .�8 �����0
���7 � � . 9 �
(� (� � � �����&�	����/	� . � 7 .�8 ���-�,�	��/�� . � (�(�������������	7
(7 .�8 ������% . �����������0
�7�� �
� � 3���� (�� 3���� (�� �����6������� 8 �����,�	��/�� . � �������	���	�) ��� . ���0/��0�

(�) ��7��-
��	7 �,� . 9 �
(3���� (��4(� (�&��� (�� � �����&�	����/	� . ��� ����7��) �	7��4�	��/�� . �
(�) ��7��-
��	7 �,� . 9 �
�&��� (��5(� 3���� (�� � ���&�	����/	� . � 7���� . �)) ��7��4�	��/�� . �

18.7. Making Synaptic Connections 291

Of course, these examples are just to illustrate the options available; we don’t claim that
these connection patterns are ideal for generating good orientation selectivity.

There is also a three-dimensional analog to planarconnect, which we’ll mention here
for completeness even though it isn’t used in Orient tut. It is volumeconnect, with the
following usage.

� . � 8
���� . ����������7 .�8 ����� " ������
�������7) ��7������������ . � " �����0
�������7 �
� (�	�����������	� �
(7 .�8 ������
���7&� � � . 9 � �����	�0
�7 . �) % 9 ��� ��* � 9 3 �	3�*�3
� (7 .�8 �����(% . ��� � � . 9 � �������0
�7 . �) % 9 � � ��* � 9 34�	3 *�3 �
(�) ��7���
���7 � � � . 9 � �����	�0
�7 . �) % 9 ��� ��* � 9 3 �	3�*�3
� (�) ��7���% . ��� � � . 9 � �������0
�7 . �) % 9 � � ��* � 9 34�	3 *�3 �
� (
�� . ����� ���	������
 �

The syntax is exactly the same as planarconnect, except that x1, y1, and z1 refer to
the minimum x, y, and z coordinates while x2, y2, z2 refer to the maximum coordinates
for a box region; for an ellipsoid region x1, y1, and z1 are the coordinates of the center of
the region while x2, y2, z2 are the lengths of the principal axes in the x, y and z regions
respectively.

NOTE: if, through an error in syntax, you mistakenly specify source or destination
elements that don’t exist, no error message will be given. Therefore, it is a good idea to
check to see if the connections exist. One way to find out what synaptic connections exist
is to use the following command:

7&% .('
 7�/��-�	�����0�	�����	���0
������������	�����
 , � ��� ��
 8 �
This refers to the randomspike element called input, which is part of receptor cell 54. The
output gives the messages sent from this element:

� *�� � � .�� ��� ��� % . ��� *��	7 .
���� �&� � ��� 9 � " 70��� � ����
�� � (� � � *�+ ��� �
� *�� � � .�� ��� ��� % . ��� *��	7 .
���� ��� � ��� 9 � " 70��� � ����
�� � (� � � *�+ ��� �
� *�� 3 � .�� ��� ��� % . ��� *��	7 .
���� ��3 � ��� 9 � " 70��� � ����
�� � (� � � *�+ ��� �

 ������ �

This shows that the receptor is connected to the excitatory synapses of the somata of several
cells. The elements receiving the messages are synchan objects. If you have a lot of
messages being passed from the source element aside from the SPIKE message, you can
type

7&% .('
 7�/��-�	�����0�	�����	���0
������������	�����
 , � ��� ��
 8 ��� /��	��
 *�+ � �

which will only display the SPIKE messages. The showmsg command doesn’t tell you what
the weight or delay is for each connection; that information is stored in the synchan objects
(on the postsynaptic side). Likewise, you can check that

292 Chapter 18. Constructing Neural Circuits and Networks

7&% .('
 7�/��-�	�����0�	�����	���0
������������	�����
�
 � ��� ��
 8 ��� /��	��
 *�+ � �

shows targets in the V1 horiz layer of somas 11–19, not including 15.
On the postsynaptic side, we can use the showmsg command to display the connections

(��� ����� messages) coming into a synapse (synchan object). For example, if we type

7&% .('
 7�/�� � ����% . ��� *	�	7 .
�� � 3�, � ��� 9 � " 7���� � /��	��
 *�+ ���

we get

� *�� � � � .
 � �-�	�����0�	�����	���0
����������-�	�	������, � ������
 8 � � ����
�� � (� � � *�+ � � �
� *�� 3 � � .
 � �-�	�����0�	�����	���0
����������-�	�	�����
 � ������
 8 � � ����
�� � (� � � *�+ � � �
� *���� � � .
 � �-�	�����0�	�����	���0
����������-�	�	����� � � ������
 8 � � ����
�� � (� � � *�+ � � �
� *�� , � � .
 � �-�	�����0�	�����	���0
����������-�	�	������� � ������
 8 � � ����
�� � (� � � *�+ � � �

 ������ �

See Sec. 18.7.3 for a more comprehensive way of obtaining information about synaptic
connections.

Setting the Delay Fields of Groups of Synapses

The transmission delays are set with the planardelay function. In this simulation, the com-
mand

����������) ������� ���	�������������	�	��
������	���-�	�	��� � ������
 8 � (�	�) �-��� ��!
	��
�� �" � ��	%

uses the x and y coordinates to calculate the radial distance from each of the source ele-
ments (rec[0]/input through rec[99]/input) to each target for the synaptic connections. This
distance is divided by the scale factor, CABLE VEL, in order to assign a value for the delay
field of the axon connection. CABLE VEL stands for the velocity of axonal propagation,
in m � sec. Dividing the distance between two objects by the propagation velocity gives the
time delay for a spike occurring at one cell to reach the postsynaptic cell, assuming that the
axons are oriented radially. Note that the distance between the two planes does not enter
into this calculation. Also note that source elements for this command must be derived
from objects that can send SPIKE messages, which usually means randomspike objects or
spikegen objects.

The full syntax for the planardelay function is:

����������) �������57 .�8 ���-��
�����%
� (� � 9 �),) ������� �
� (�	�) �-���4� . �)�8 ����� . � " �	��� . ������� �
� (�)�) �
� (�8 � � � . �-
 7�������� �

18.7. Making Synaptic Connections 293

� (/	� 8 7�7��-���67��) � ��
�� 9) � � �
� (� 9
 . �	�������-���
:�)
�� 90�
� (����7 . � 8 �	���	�-�)�.
 �

There are several options for the planardelay function. The first two options (=���� ��� �
and = � ������� �) are mutually exclusive. =���������� means that the delays from the source are
all nominally equal to ��� ��� � . = � � ����� � means that the delays from the source are scaled
according to the radial distance between the source and the targets. conduction velocity
represents the conduction velocity of the spike along the (hypothetical) axon. As mentioned
above, the computed delay between two elements equals the radial distance between the
elements (computed by the function) divided by the conduction velocity. The =	����� option
causes the delays computed using either the =���� ��� � or = � � ����� � commands to be added to
the preexisting delay (the default is to simply replace the existing delay with the new value).
This can be useful if you are modeling cells connected by fiber tracts that have sections
with different conduction velocities, for example, when fast-conducting axons give rise to
slower-conducting axon collaterals. In that case you can call planardelay once to set up the
delays from the axon and call it again using the =	� ��� option to add the delays from the axon
collaterals using a different conduction velocity.

The other options represent ways of adding random components to the delays. Since
these same options are used for several commands, they are discussed in further detail later
in this section under “Adding Randomness to Weights and Delays.”

There is also a three-dimensional analog of this command, called volumedelay, with the
same syntax,

� . � 8
��) �������
�����%
� (� � 9 �),) ������� �
� (�	�) �-���4� . �)�8 ����� . � " �	��� . ������� �
� (�)�) �
� (�8 � � � . �-
 7�������� �
� (/	� 8 7�7��-���67��) � ��
�� 9) � � �
� (� 9
 . �	�������-���
:�)
�� 90�
� (����7 . � 8 �	���	�-�)�.
 �

The only difference between planardelay and volumedelay is that volumedelay calculates
the radial distance using all three dimensions instead of just the x and y dimensions.

There is also a separate command called syndelay, for adding a small synaptic compo-
nent to the delays. This is useful when cells are very close together and the delay calculated
using the = � ������� � option of planardelay or volumedelay is unrealistically small. The usage
of this command is:

7����) �������&
�����%) �������
� (�)�) �

294 Chapter 18. Constructing Neural Circuits and Networks

� (�8 � � � . �-
 7�������� �
� (/	� 8 7�7��-���67��) � ��
�� 9) � � �
� (� 9
 . �	�������-���
:�)
�� 90�
� (����7 . � 8 �	���	�-�)�.
 �

In this case the path specification is to a group of postsynaptic objects (i.e., synchan
elements). The delay is equal to the “delay” argument of the command, with the appropriate
random component added. If you want to add this delay to a delay previously determined
using planardelay, say, use the =������ option as with planardelay. If not, the computed
delays become the delays of the synapses and if you want to add axonal delays you will
have to use planardelay or volumedelay with the =	����� option. In general, one usually sets
the axonal delay first and then adds on the synaptic delay if desired. It is important to note
that the synaptic delay is NOT a separate field in the synapse; the axonal and synaptic delays
are lumped together in a single “delay” field.

Setting the Weight Fields of Groups of Synapses

Finally, we have to assign weights to the synapses, since the planarconnect function initial-
izes all weights to zero. In the Orient tut simulation, this is done with the command

���������� ' ����/�%�� ���	�����0������������
����-���������	��� � �	�0��
 8 � (� � 9 �) �! 3�3
This command is of the form

���������� ' ����/�%��57 .�8 ������
�����%
� (� � 9 �) ' ����/�%�� �
� (�) �������) ������� " �	���	�
�� 9�" ' ����/�%���
:�0� " ' ����/�%�� �
� (-8 � � � . �-
 7��-����� �
� (/	� 8 7�7��-����7��) � ��
�� 9) � � �
� (� 9
 . �������������
 �)
�� 90�
� (����7 . � 8 �	�������)�.
 �

where sourcepath normally refers to the spikegen or randomspike elements of the source
cells. In this command, the first options (=���������� and = ��� ��� �) are mutually exclusive and
determine whether the weights fall off with distance from the source. The =���� ����� option
makes all weights from that sourcepath nominally equal to weight. The = ��� ��� � option
works like planardelay calculating a radial distance between the source elements and each
target. The parameter decay rate gives the rate for an exponential decay of the weights with
radial distance. Note that decay rate has the units of meters � 1. The function describing the
weight as a function of max weight and min weight for this option is

weight = (max weight $ min weight) < exp($ decay rate < radial distance)
�

min weight.

18.7. Making Synaptic Connections 295

The reason one might want weights that decay exponentially with distance depends on
the conceptual framework of the simulation. If each synapse in your network simulation
is intended to represent one synapse in the real system, then the weights could have any
(physiologically reasonable) value, and it might be best to set them to a random value
within reasonable limits if you had no a priori reason to set them to particular values for
particular cells. On the other hand, since a simulator typically models a large network of
neurons with a much smaller number of simulated cells, each cell can be thought of as
representative of a group of cells in a particular region. In this case, it makes sense that, on
average, simulated cells close together will have stronger connections between them (i.e.,
synapses with larger weights) than simulated cells located farther apart from each other, for
the simple reason that the real cells of which the simulated cells are representative will in
general form more connections between them if they are close together than if they are far
apart. It has to be kept in mind that unless you intend to model every cell in the network,
each cell is really an abstraction of a class of cells, and the strength of the synapses has to
reflect the nature of this abstraction. If you don’t want exponential decay of weights, you
should use the =���� ����� option. In the Orient tut simulation we use the =���� ����� option since
we aren’t modeling connections between V1 cells (but see the exercises at the end of the
chapter). Remember that if you don’t use planarweight (or volumeweight, described next),
you have to set the weights explicitly, since they are equal to zero by default.

As usual, there is also a three-dimensional analog of this command, called volumeweight
with the same syntax and function:

� . � 8
�� ' ����/�%��57 .�8 ������
�����%
� (� � 9 �) ' ����/�%�� �
� (�) �������) ������� " �	���	�
�� 9�" ' ����/�%���
:�0� " ' ����/�%�� �
� (-8 � � � . �-
 7��-����� �
� (/	� 8 7�7��-����7��) � ��
�� 9) � � �
� (� 9
 . �������������
 �)
�� 90�
� (����7 . � 8 �	�������)�.
 �

The only difference between volumeweight and planarweight is that, for the = ��� ��� �
option, the distances are calculated using all three dimensions instead of just the x and y
dimensions.

Adding Randomness to Weights and Delays

The above commands for setting weights and delays have a set of options for adding a
random component to the weights and delays set. These options are the same for all these
commands, and have the form:

�	� .
�
����) �
�	� .
�
����)	(7�
��	��� � ��� .
���� . ��7 �

296 Chapter 18. Constructing Neural Circuits and Networks

� (-8 � � � . �-
 7��-����� �
� (/	� 8 7�7��-����7��) � ��
�� 9) � � �
� (� 9
 . �������������
 �)
�� 90�
� (����7 . � 8 �	�������)�.
 �

Each of the first three options selects a random number out of a particular probability
distribution. The scale option of =
�	� � ��� � � gives a random number uniformly distributed
in the range � -scale, scale � . The =����
� �������
� option gives a Gaussian-distributed random
value with a mean of zero, a standard deviation of stdev, and a maximum deviation of
maxdev. The =	� ���������
������� � option gives an exponentially distributed value with a mini-
mum value of zero, 1/e point (i.e., the point at which the probability density function has
decayed to 1/e of its maximum value) at mid and maximum value of max. The max or
maxdev arguments are useful in cases where you want to truncate the ends of a distribution
to prevent weights and delays from being larger or smaller than some limit. For instance, a
suitable choice of max or maxdev will prevent the possibility of setting weights or delays to
a negative value, which is biologically meaningless. However, as an added precaution, the
commands for setting groups of weights and delays will set negative values that may arise
from using the random options to zero.

The way these options are used is as follows. First the weight or delay is calculated
according to the command-specific options of the command. Let’s say that val is the value
of a weight or delay before any randomness is added. After the random number is included,
we have

val = val
�

(val < random number)

unless the =	��� ��� �
����� � ��� ��� � option is used, in which case we have

val = val
�

random number

In other words, normally the value of the random number is scaled to the existing weight
or delay before adding it to the weight or delay. This is reasonable in most cases, since you
usually want to add a certain proportion of variability to all weights or delays. Thus it’s easy
to add, say, up to 10% randomness to your weights — just use =
��� � ��� � � B���G . If you want
to add random numbers from the same distribution to all weights or delays regardless of
their original size, use the =	��� ��� �
����� � ��� ��� � option (which you can abbreviate as =	� � �).

In all these cases, the random number is chosen separately for each synaptic connec-
tion. The command “

� ��� �����	��� � ���
� ��� ��� ” will initialize the random number generator
with number. If randseed is called with no arguments it will initialize the random number
generator with the current time, giving random numbers that will be different each time you
run the simulation.

Here are a couple of examples. In the above case, if you wanted to have delays cor-
responding to conduction velocities uniformly distributed between 1 and 2 m � sec (i.e.,

18.7. Making Synaptic Connections 297

1 � 5
�

0 � 5 m � sec, or 1 � 5
�

33%) you could type

����������) ������� ���	�������������	�	��
������	���-�	�	��� � ������
 8 � (�	�) �-���#��
5(-8 � � � . ��
 �! � �

(We’re assuming you’re using SI units here.) Note that the scaling is important here, since
the delays are calculated by dividing the distance by the conduction velocities. Thus, delays
corresponding to nearby elements will be shorter than those corresponding to elements
separated by a greater distance. Therefore, it is important that the random component of the
delay be scaled to a value that is a constant proportion of the total delay.

If you wanted weights normally distributed with a mean of 2 � 0, a standard deviation of
10% of the mean (i.e., 0.2), and a maximum deviation of 40% of the mean (0.8), giving the
weights the range of � 1.2, 2.8 � , you could type

���������� ' ����/�%�� ���	�����0������������
����-���������	��� � �	�0��
 8 � (� � 9 �) 3! "� (/�� 8 7�7��������! � �!),

In this case, we could have used the =	��� ��� �
����� � ��� ��� � option with the arguments
=������ ���	����� B��
 B ��� to get the same effect, since here the weights are all the same at the
beginning. It is very important to bear in mind that the arguments to the options involving
randomness are relative to the actual weight or delay value unless the =���� �
� � ����� � �
� ���	�
option is used.

After setting up weights and delays with the above commands, it would be a good idea
to check that they are in the desired ranges. We could use showfield for this, but it would be
a tedious procedure to track down all the connections and to inspect the various synchan
fields. Fortunately, GENESIS has some commands that make this easier.

18.7.3 Utility Functions for Synapses

In general, we do not want to be concerned with the synapse number (hereafter called
the synapse index, since it represents the index of an array of synapses) when setting up
weights and delays. In addition, sometimes we may need to access other information about
synapses, such as the source element of a given synapse or the total number of synapses.
GENESIS provides several utility functions for this purpose, which we describe here. These
functions will be particularly useful for debugging a simulation. Although the commands
described above are much more efficient than the use of for loops for the establishment of
network connections, it is easy to make a mistake in syntax and not get the connections that
were intended.

The function getsyncount has the usage

/	����7������ .�8 ���+�
��	��7�������
������ (������
������ � �
 . 7���7������-
������ (�����0
��-��� �

298 Chapter 18. Constructing Neural Circuits and Networks

This function is used to count synapse numbers. Either one or both options must be spec-
ified. The most common usage is to specify only the presynaptic element. In this case, it
returns the number of SPIKE messages that are sent by that element. If only the postsynap-
tic element (e.g., a synchan) is present, it returns the number of synapses in that element.
As we have seen in Chapter 15 and in Sec. 18.7.1, we could also obtain this result by using
getfield to retrieve the nsynapses field of the postsynaptic element. If both arguments are
present, it returns a count of the number of synapses in the postsynaptic element that re-
ceive SPIKE messages from the presynaptic element. (This will almost always return 0 or
1, as redundant connections between the same source and destination are more efficiently
handled by increasing the synaptic weight of the connection.)

The function getsynindex has the usage

/	����7���� ���) � 9 �-
��	��7�������
������ (������
������ � �-
 . 7���7������-
������ (�����0
��-��� � � (� 8
������,� �
It is used to find the index of synapses between the given presynaptic and postsynaptic ele-
ments. The =
�	�
� ��� � option will give the index of the nth synapse between the presynaptic
and postsynaptic target. This option should rarely be necessary, since usually there is at
most one synapse between a given presynaptic and postsynaptic element. If no matching
synapse is found, a warning message is printed and the function returns $ 1.

We can use the getsynindex function in GENESIS to help us set the weights and delays
of a synapse whose presynaptic element is known but whose index is not. For example we
could type

�0��� 7���� " � 8
	� � /	����7���� ���) � 9 ���	�����0������������
����-�����-���	��� � � �	����
 8 �,���� ����% . ��� *	�	7 .
�� � � � ��� 9 � " 70��� %7���� � �-���) ��� ����% . ��� *	��7 .
�� � � � ��� 9 � " 7����47����	��
�7�� � � 7���� " � 8
 %(� ' �	��/�%��,3� "�5�7�������
�7�� � � 7���� %��) �����-�#�0� (,
The function getsynsrc has the usage

/	����7�����7������-
 . 7���7����	��
������ (������
��-��� � �	�0�) � 9 �
This function returns a string that is the path of the presynaptic element sending the SPIKE
message to the synapse of the postsynaptic element with the given index.

The function getsyndest has the usage

/	����7����) ��7����-
��	��7����	��
������ (������
��-��� � ��� � � (�0�) � 90�
This function returns a string that is the path of the postsynaptic element which receives
the nth SPIKE message sent by the presynaptic element. The =�� � ��� � option returns the
index of the synapse corresponding to this message. Alternatively, after having found the
destination synapse, you may find its index by using getsynindex.

As an example of the use of the above functions, we can write a script function to give
information about all the synapses in a particular synchan:

18.8. Setting Up the Inputs 299

� 8 ������� . � 7�������
�7�� " �0� � .

��-��% �7����4
	����% � 7����
�0��� �
� � . ��� ' ���0/�%��!�) �������
� � . ��� � . �-
������ � /
� . ��
����	� � ��� � /	����7������ .�8 ��� �
	����% %�% � ���F� �����

7���� � � /	����7�����7���� �
�����% % � � %�%
' ����/�%���� � /	��� � �-���) �
�����% % 7������-
�7�� � � � %�� ' ����/�%�� %) ������� � � /	��� � �-���) �
�����% % 7������-
�7�� � � � %��) ������� %�	�&% . 7������-
�7�� � � � %���� �7���� � � 7���� % ' ���0/�%���� � ' ����/�%�� %) ��������� �) ������� %���)���)

This function also uses the floatformat command to set the format of the output to %.3g,
which displays at most three significant figures and rounds the output to reasonable values.
The GENESIS default is to print out 10 significant digits, which is often unnecessary.

We can use this function to check the ranges of the weights and delays of the synapses
in the Orient tut simulation. For example,
7����	��
�7�� " �0� � . ��� ����% . ��� *	��7 .
�� � ��3 � ��� 9 � " 7����
gives the output7����	��
�7�� �)� ��� 7������ ���	�����0�����-�	����
������	���-����� � � � � �	�0��
 8 � ' ����/�%������� 3�3) ���������#�! "����� � ��
7����	��
�7�� � � ��� 7������ ���	�����0�����-�	����
������	���-����� � � � � �	�0��
 8 � ' ����/�%������� 3�3) ���������#�! "����� ��3 �7����	��
�7�� � 3 ��� 7������ ���	�����0�����-�	����
������	���-����� � � 3 � �	�0��
 8 � ' ����/�%������� 3�3) �����������! �(,	� (�
7����	��
�7�� � ����� 7������ ���	�����0�����-�	����
������	���-����� � �
��� �	�0��
 8 � ' ����/�%������� 3�3) ���������
 ��� � (�
7����	��
�7�� � , ��� 7������ ���	�����0�����-�	����
������	���-����� � � , � �	�0��
 8 � ' ����/�%������� 3�3) ���������	,	� (�

 ������ �

18.8 Setting Up the Inputs

After the network is constructed, we will usually want a way to provide some input to the
network. The details of this will generally be specific to your simulation. The inputs to
the Orient tut network are specified in the file ret input.g. This file defines several func-
tions whose purpose is to sweep a vertical or horizontal bar across the retinal cells. This
is done by imposing an average firing rate on these cells by setting the rate field of the
randomspike elements in /retina/recplane/rec[0-99]/input. There are a number of ways
to accomplish this in GENESIS. One possibility would be to set up a for loop that runs
through all the elements and sets the rate to a high or low value depending on the position
of the cell in space. Another approach, which is used in the file, is to define a function
called do autosweep which is invoked on each step of the simulation. Yet another approach
would be to define a GENESIS extended object that performs the same function. More
information is given in the README file in the Orient tut directory and in the comments in
the ret input.g file.

300 Chapter 18. Constructing Neural Circuits and Networks

18.9 Summary

In this chapter we have shown you the GENESIS commands for creating groups of cells
and connecting them in networks. We have discussed how to set up synapses individually
and also have described various commands that allow you to set up groups of synapses
simultaneously. These commands enable you to configure the connectivity patterns, synap-
tic weights, and synaptic delays of a network in very flexible ways. We have used the
Orient tut simulation as an example to show how these commands are used in a real sim-
ulation. The Orient tut simulation also implements a graphical user interface that allows
the user to look at various aspects of the network as it is being simulated, including the
firing patterns of the input (retinal) cells, the membrane potentials of the output (V1) cells,
and the connection patterns in the network. The objects and commands used to set up the
interface are described in Chapter 22.

18.10 Exercises

1. Verify that with CABLE VEL = 1, the delays for the connections from
rec[54]/axon to the targets in the V1 horiz layer of somas 11, 12 and 13 are correct
(i.e., are equal to the radial distances).

2. Modify the “synapse info” function, using the synaptic utility functions described
previously, to generate the pathname, synapse index, weight, and delay values of all
synapses projecting from a given randomspike element, i.e., all synapses receiving
SPIKE messages from that element. You might want to save this function for later
use.

3. Look at the file ret V1.g. How is the orientation-selectivity conferred on the network?
Can you improve the selectivity just by changing some parameters of the commands?

The cells in the two V1 planes contain some elements that are not used in the simulation.
The spike generators of the cells connect to nothing and there is no input to the inhibitory
channels, inh syn. As an exercise in using the commands discussed above,

4. Modify the ret V1.g script by adding synapses between the retinal cells and the in-
hibitory synapses of the V1 cells in order to improve the quality of the orientation
selectivity.

5. Modify the ret V1.g script to generate connections between V1 cells. Can you use
the feedback connections to further improve the quality of the orientation selectivity?

