Chapter 2
Compartmental Modeling

JAMES M. BOWER and DAVID BEEMAN

Before beginning to explore the tutorials, it is important to understand something about the
assumptions and the mathematical models that underlie these simulations. Thus, although
the first section of the book describes what are essentially “point and click” tutorials, it is
important not to use these tutorials blindly. Their effective use requires some understanding
of the basics of neural modeling, as well as the concepts in neuroscience that are introduced
along with the tutorials. Entire books have been written on this subject, so obviously we
can only highlight the issues here. However, throughout the text we have referenced other
sources of information. If you are seriously considering building models yourself, we would
strongly recommend that you consult these references.

2.1 Modeling Neurons

Figure 2.1A shows an example neuron based on a drawing of a pyramidal cell by Ramoén y
Cajal that we would like to model, either as a single cell, or as a component in a network of
interacting neurons. This figure shows the tree-like structure of the dendrites, which receive
synaptic inputs from other neurons. Synaptically activated ion channels in the dendrites
create postsynaptic potentials that, we assume here for simplicity, are passively propagated
to the pyramid-shaped cell body (soma) where voltage-activated ion channels may create
action potentials. In most cells, these channels are concentrated near the base of the soma in
the region called the axon hillock near the axon. The long axon at the bottom of the figure
propagates action potentials to terminal branches that form synapses with other neurons.
In some cases (Chapter 7) neurons may have voltage-activated channels in their dendrites.
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This not only complicates their electrical properties and thus their simulation, but also is
responsible for the complex dynamics of these neurons.

2.1.1 Detailed Compartmental Models

When constructing detailed neuronal models that explicitly consider all of the potential
complexities of a cell, the increasingly standard approach is to divide the neuron into a
finite number of interconnected anatomical compartments. Figure 2.1B shows a simplified
model in which the neuron is divided into several dendrite compartments, a soma, and an
axon. Each compartment is then modeled with equations describing an equivalent electrical
circuit (Rall 1959). With the appropriate differential equations for each compartment, we
can model the behavior of each compartment as well as its interactions with neighboring
compartments.
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Figure2.1 (A) A pyramidal cell with dendrites, soma, and axon. (B) A simplifi ed discrete compartmental
model of the same neuron.

In this type of detailed compartmental model, each compartment must be made small
enough to be at approximately the same electrical potential. Often this means constructing
simulations out of very large numbers of compartments. For example, we have recently
published a GENESIS model of a cerebellar Purkinje cell that uses 4550 compartments and
8021 channels (De Schutter and Bower 1994a,b). The representation of this model is shown
in Fig. 2.2.
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Figure2.2 A detailed multi-compartmental model of a cerebellar Purkinje cell, created with GENESIS by
De Schutter and Bower (1994a,b). Visualization by Jason Leigh using the GENESIS Visualizer program. The
experimental data describing the cell morphology was provided by M. Rapp, |. Segev and Y. Yarom.

2.1.2 Equivalent Cylinder Models

For some purposes, it may be adequate to model neurons with a smaller number of non-
equipotential compartments. Models of this sort can be used to model basic electrical prop-
erties of cells, or to construct small networks of neurons. Under these conditions, there are
defined methods for constructing neuronal models dependent on the anatomy and physi-
ology of the neuron in question. Many of these have been pioneered by Wilfrid Rall (cf.,
Segev, Rinzel and Shepherd 1995). For example, Rall has shown analytically that if den-
dritic trees approximately satisfy a “3/2 power law” and do not contain active conductances,
they can safely be mapped into an equivalent linear structure (Chapter 5). In this way, un-
der defined conditions, a complicated branching structure can be approximated by a much
simpler linear dendrite model, as was done in the model shown in Fig. 2.1B. However, in
general, as the known complexity of the physiology or anatomy of the neuron increases, it
is usually necessary to revert to full-blown compartmental models.



10 Chapter 2. Compartmental Modeling

2.1.3 Single and Few Compartment Models

In cases where large numbers of neurons are being placed in network models, limited com-
puter resources sometimes require that neurons be modeled with single compartments or a
very small number of compartments. For example, a large-scale GENESIS simulation of
the olfactory cortex uses a network of 4500 neurons containing simple model pyramidal
cells similar to the one shown in Fig. 2.1B (Wilson and Bower 1989, 1992). As you will
see for yourself in Chapter 9, even such simplified neurons can sometimes capture exper-
imentally observed behavior. In Chapter 7, we will see that only a single compartment is
needed to model the behavior of some invertebrate “pacemaker” neurons. On the other
hand, when building models of this type, one must always be aware that there are many
local “computations” that occur in the extensive dendritic system of many neurons. Again,
if these are of interest to the modeler, it is usually necessary to use hundreds or thousands
of compartments.

2.2 Equivalent Circuit of a Single Compartment

Having described the general approaches to modeling single neurons, we now discuss in
a bit more detail the basis for compartmental modeling. The reader should note that this
section is intended as a very basic overview of neural modeling. The topics covered here
are treated in more detail in Chapters 4-6 and by Segev, Fleshman and Burke (1989).

As we have described, the notion of an equivalent electrical circuit for a small piece of
cellular membrane is the basis for all compartmental modeling. This arises from the fact
that neuronal membranes have been demonstrated to behave as simple electrical circuits
with some capacitance, resistance, and voltage sources. These model parameters define
the so-called passive properties that are responsible for the way that electrical impulses
are transmitted along the dendritic tree. It is generally necessary, as well as advisable, to
begin all single cell modeling efforts with a consideration of passive cellular properties of
the cell. These properties form the basis for the usually more interesting neuronal behavior
that arises from the active properties provided by different voltage- or ligand-dependent
conductances. If the passive properties are not modeled correctly, spurious results with
active conductances are likely to be obtained.

Figure 2.3 shows the equivalent electrical circuit of a basic neural compartment. Here,
Vi represents the membrane potential, or the potential in the interior of a compartment rel-
ative to a point outside the cell. The “ground” symbol at the bottom of the figure represents
this external point, taken to be at zero potential. As the conducting ionic solutions inside
and outside of the cell are separated by the cell membrane, the compartment acts as a ca-
pacitor. This is charged or discharged by current flowing into or out of the compartment.
This current flow may be from adjacent compartments, from the passage of ions through
channels in the cell membrane, or from current injection from an electrode inserted into the
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cell. The membrane potential appears across the membrane capacitance Cy,, and can cause
a current flow into or out of the compartment at the left through the axial resistance R, when
there is a difference in potential Vi, — Vi between the two compartments. Likewise, there
may be a flow of current into or out of the primed compartment at the right through its axial
resistance R,

Vi | Vi | Vin
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Figure2.3 Theequivalent circuit for a“generic” neural compartment.

The resistor with the arrow through it represents one of many possible variable channel
conductances that are specific to a particular ion or combination of ions that give individ-
ual neurons and neuron types their unique computational properties. By convention, these
are described in terms of the conductance Gy rather than the resistance. As the conduc-
tance is the reciprocal of resistance, the units of Gy are in reciprocal ohms, or siemens.
Differences in the concentration of the ion between the inside and the outside of the cell
result in an osmotic pressure which tends to move ions along the concentration gradient.
The resulting charge displacement creates a potential difference that opposes this flow. The
membrane potential at which there is no net flux of the ion is the equilibrium potential (or
reversal potential) Ey, represented by a battery in series with the conductance. In the ab-
sence of synaptic input, current injection, or spontaneous firing of action potentials, Vi, will
approach a steady state rest potential E;eq, typically in the range of —40 to —100 mV. This
is determined by the condition that there is no net current flow into the cell from the various
types of ion channels.

The other resistor and battery linking the exterior and the interior of the cell represent
the combined effect of passive channels (mainly those for chloride ions) having a relatively
fixed conductance. The resistance is usually called the membrane resistance Ry, although
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it is sometimes referred to as a leakage conductance Gk = 1/Rm. The associated equilib-
rium potential Ey, is typically close to the rest potential. In some cases, it is given a slightly
different value, E e, in order to reduce the net channel current to zero when Vi, = Ereg.
Finally, the current source linjet represents an optional injection current which could be
provided by an electrode inserted into the compartment.

One may then calculate Vi, using a differential equation which expresses the fact that
the rate of change of the potential across Cy, is proportional to the net current flowing into
the compartment to charge the capacitance. On the right-hand side of Eq. 2.1, Ohm’s law is
used to calculate the current due to each of the sources shown in Fig. 2.3:

dVim

Vin—Vm) | (Vim— Vi)
at +

R R + linject-

G — Em ) +;[<Ek—vm>ek]+( 2.1)

Here, the sum over k represents a sum over the different types of ion channels that are
present in the compartment. The sign convention used in the GENESIS simulator defines
a positive channel current to be one that causes a flow of positive charge into the com-
partment. The variable conductance of each channel type G gives the net effect of many
individual channels that open and close in a binary manner.

To model this on a computer, we need to numerically solve Eq. 2.1 for each compart-
ment. Of course, the Vi and V, in the adjacent compartments affect the currents flowing
into or out of the compartments, so we are solving many coupled equations in parallel.
Also, we will need good models for the way that the conductances vary with voltage, time
or synaptic input.

2.3 Axonal Connections, Synapses and Networks

Typically, but not always, neurons communicate by means of chemical synapses. The most
common situation is one in which an action potential causes the release of a neurotransmit-
ter from a presynaptic terminal at the end of an axon branch. This diffuses across a narrow
gap to the postsynaptic junction (usually on a dendrite), causing an increase in conductance
for a specific set of ion channels that are sensitive to this transmitter. However, synaptic
connections may also be found between two axons or between two dendrites. In many
cases, axons make connections to the cell body, rather than to dendritic branches.

Usually, we can treat an axon as a simple delay line for the propagation of action poten-
tials, although it could also be modeled as a series of compartments if we were interested
in understanding the details of axonal propagation. In most cases, the change in the post-
synaptic channel conductance is a simple function of time which may be determined from
experimental measurements. Then, we may avoid having to model the details of the pro-
cess of presynaptic transmitter release, its binding to postsynaptic receptors, and the way
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in which the permeability of the postsynaptic membrane is affected. Instead, we may use
an analytical expression such as the alpha function, described in Chapter 6, to represent
the resulting conductance of synaptically activated channels. When more detailed models
of the biochemical reactions underlying synaptic transmission are required, they may be
created using the techniques described in Chapter 10 and the graphical interface Kinetikit,
which was created for the development of models of biochemical signaling pathways.

Of course, each synapse has associated with it an effect of a particular magnitude or
“weight” on the postsynaptic cell. Furthermore, these weights can change under some
circumstances. The implementation of this synaptic plagticity is discussed in Chapter 15.
Chapter 19 treats one class of receptors, the voltage-dependent NMDA receptors, which
have been shown to confer such weight-changing properties on synapses. Chapter 19 also
considers electrical synapses, which are yet another type of connection between cells. Once
we have modeled single neurons and the ways in which they may interact, we can proceed to
modeling neural circuits and networks. Example models are discussed in Chapters 8 and 9,
and the details of constructing your own network simulations are given in Chapter 18.

2.4 Simulation Accuracy

Once a modeler has constructed a simulation, the accuracy of the results depends on many
factors, from the quality of the data used to construct the simulation, to the way in which
the simulation is run numerically. In the case of an analytic solution, one knows the re-
sult is correct, assuming that the underlying model is correct. For numerical simulations,
it is trickier. Is a surprising result the result of some error, or is it an exciting new discov-
ery? How do we know when to trust a simulation? Throughout this book, we offer some
suggestions for developing the sort of intuition and feeling for neuronal behavior that will
help you to identify “suspicious” results and their possible causes. As described below, the
causes can range from mistakes in the use of the simulation language (programming errors),
conceptual errors in the model, inappropriate choices of parameters, and numerical inaccu-
racies due to the wrong size numerical integration step, to the legitimate but unanticipated
behavior of a complex system.

2.4.1 Choice of Numerical Integration Technique

A neural simulation program solves a set of coupled equations like Eqg. 2.1 by replacing
the differential equation with a difference equation that is solved at discrete time intervals.
Typically, smaller time intervals lead to greater accuracy but slower execution time, as
more time steps are required for the solution over a given time period. A wide variety of
numerical integration techniques has been developed to carry out this procedure with the
best compromise between speed and accuracy. These fall into two general categories. So-
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called explicit methods are the simplest, but can require very small time steps in order to
avoid numerical instabilities when there are many small compartments in a model. The
implicit methods are more complex, but are much more stable (Mascagni 1989).

GENESIS provides a choice between several different numerical integration methods,
ranging from the crude explicit forward Euler method  through highly stable implicit
methods. These methods are described in Chapter 20. In general, the best method to use
depends on the nature of the model. Often, there is a tradeoff between ease of use and
computational efficiency. The default integration method is the exponential Euler method,
which is optimized for the solution of equations that are of the general form of Eq. 2.1 (Mac-
Gregor 1987). This is generally the best choice for cell models having only a few compart-
ments, as used in most network simulations. Chapter 20 discusses the use of a generalized
version of the algorithm developed by Hines (1984) for implementing the backward Euler
and Crank-Nicholson implicit methods. These are the fastest of the numerical methods used
by GENESIS and are stable and accurate when used with relatively large integration steps.
These are used for detailed cell models that contain many compartments. However, they
require some additional steps in setting up the simulation and make it harder to interactively
modify the simulation. For this reason, one usually develops and refines a simulation using
the default method and switches to one of the implicit methods if additional speed is needed
for long simulation runs. The Cable tutorial which is described in Chapter 5 allows you to
experiment with the various integration methods that are available.

2.4.2 Integration Time Step

Even after you have selected a numerical integrator, the step size used in the numerical
integration of the differential equations that describe the model is important. The difficulty
is that certain combinations of parameters can sometimes result in a situation where the
step size is too large to yield accurate results. On the other hand, the use of too small
a time step may lead to round off errors, as well as unnecessarily slow execution of the
simulation. In general, the step size should be much smaller than the time scale for the
most rapidly occurring events. For example, the action potentials that are produced in a
simulation typically rise to their maximum value in about 1 msec. Thus, a time step of
0.01 msec is an appropriate choice.

The default value of the time step that is given for these tutorials usually results in a
good compromise between accuracy and speed of computation. However, if you have made
significant changes in the default parameters for a simulation, it would be a good idea to
experiment with the step size. If increasing it makes no changes in the results, you can use
the larger step size to speed up the simulation. If decreasing the step size causes the results
to change, you should continue to decrease it until you see no significant changes. Several
exercises in the tutorials that follow deal with this question.
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2.4.3 Accuracy of GENESIS

Finally, even if a modeler has been extremely careful in constructing a particular model, its
accuracy is still dependent on the software in which it is coded. This is especially the case if
one is using a general-purpose simulation system such as GENESIS. For this reason, when
choosing a neural simulator, the reliability and accuracy of the simulator is at least as impor-
tant a consideration as its speed. To quantify the speed and accuracy of both GENESIS and
other simulators, we have developed the “Rallpacks” suite of benchmarks (Bhalla, Bilitch
and Bower 1992). The Rallpacks are currently based on three sets of benchmarks: a linear
passive cable with many compartments; a highly branched cable; and a linear axon con-
taining Hodgkin-Huxley channels. In the first two cases, simulator results can be compared
to exact analytic solutions. In the third case, which already is an example where the com-
plexity of the model makes analytic solutions impossible, results can be compared to other
frequently used, but independently developed simulators. These measures demonstrate that
GENESIS is as fast and accurate as any existing simulation system.® However, as models
within GENESIS or any simulation system become more complex, modelers must be more
and more skeptical, vigilant and self-critical.

IThe set of Rallpack benchmarks may be obtained by ftp in the same manner as GENESIS, following the
procedure outlined in Appendix A.
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