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The Hodgkin-Huxley Model

MARK NELSON and JOHN RINZEL

4.1 Introduction

Our present day understanding and methods of modeling neural excitability have been sig-
nificantly influenced by the landmark work of Hodgkin and Huxley. In a series of five ar-
ticles published in 1952 (Hodgkin, Huxley and Katz 1952, Hodgkin and Huxley 1952a–d)
these investigators (together with Bernard Katz, who was a coauthor of the lead paper and
a collaborator in several of the related studies) unveiled the key properties of the ionic con-
ductances underlying the nerve action potential. For this outstanding achievement, Hodgkin
and Huxley were awarded the 1963 Nobel Prize in Physiology and Medicine (shared with
John Eccles, for his work on potentials and conductances at motoneuron synapses). The first
four papers in the series summarize an experimental tour de force in which Hodgkin and
Huxley brought to bear new experimental techniques for characterizing membrane prop-
erties. The final paper in the series places the experimental data into a comprehensive
theoretical framework that forms the basis of our modern views of neural excitability. For
a discussion and review of these seminal papers, see Rinzel (1990).

Hodgkin and Huxley indeed were aware that their findings and ideas had broad implica-
tions; they implicitly acknowledged this by the title of their fifth paper (Hodgkin and Huxley
1952d), which was the only one in the series not to explicitly mention the squid by name.
Although the squid giant axon ultimately may have served as a means to an end, this is not
to deny the squid her proper credit. Her generosity in providing a technically convenient
preparation — a gargantuan axon, up to 1 mm in diameter — is often acknowledged. Less
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30 Chapter 4. The Hodgkin-Huxley Model

widely appreciated is the fortuitous fact that, relative to most excitable nerve membrane,
the squid axon is a simple system with basically only two types of voltage-dependent con-
ductances. Today, we know of many more conductance types that can contribute to the
excitability of nerve cells (Llinás 1988; also, see Chapter 7 in this volume). The squid axon
membrane was an ideal model system; it presented a suitably generic and tractable problem,
the solution of which gave rise to powerful new techniques and fundamental concepts.

In this chapter, we explore the Hodgkin-Huxley (HH) model using a GENESIS tutorial
simulation called Squid. Before describing the mathematical model and performing the
simulations, we provide a brief historical overview, so that the reader may better appreciate
the scientific impact this work had at the time and how it has come to shape our present
understanding of neural excitability. In exploring the HH model in this chapter, we will
only be able to touch on some of the highlights. For a fuller appreciation of the model, we
recommend a careful reading of the original paper (Hodgkin and Huxley 1952d). Additional
historical and biophysical background on the HH model may also be found in Cole (1968),
Hodgkin (1976), and Hille (1984).

4.2 Historical Background

For perspective, we begin by recounting the experimental evidence and theoretical concepts
about neural excitability that existed at the time when Hodgkin and Huxley were developing
their ideas and techniques. At that time, it was known that nerve cells had a low-resistance
cytoplasm surrounded by a high-resistance membrane, that the membrane had an associ-
ated electrical capacitance, and that there was an electrical potential difference between
the inside and the outside of the cell. It is important to note that until about 1940, there
was no way to measure the membrane potential directly. Prior to that time, observations of
nerve cell activity were made only with extracellular electrodes, which are capable of de-
tecting electrical activity and action potentials, but only provide indirect information about
the membrane potential itself.

A key piece of experimental data on neural excitability was obtained when Cole and
Curtis (1939) used a Wheatstone bridge circuit to obtain the first convincing evidence for a
transient increase in membrane conductance during an action potential. Their results were
generally consistent with a popular hypothesis proposed much earlier by Bernstein (1902)
that predicted a massive increase in membrane permeability during an action potential.
Bernstein had formulated his hypothesis by reasoning as follows. It was known that a
cell’s membrane separated solutions of different ionic concentrations, with a much higher
concentration of potassium inside than outside, and the opposite for sodium. By applying
Nernst’s theory, Bernstein was led to suggest that the resting membrane was semipermeable
only to potassium, implying that at rest the membrane potential Vm should be close to the
potassium equilibrium potential EK of about 
 75 mV . Then, during activity, he believed
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that a “breakdown” in the membrane’s resistance to all ionic fluxes would occur and the
potential difference across the membrane should disappear; i.e., Vm would tend to zero.
Although the conductance increase observed by Cole and Curtis (1939) during the action
potential was qualitatively consistent with Bernstein’s hypothesis, the increase was not as
large as one would expect from an extensive membrane breakdown.

During a postdoctoral visit in the U. S. spanning 1937–38, Hodgkin established ties
with Cole’s group at Columbia University and worked with them also at Woods Hole in
the summer. He and Curtis almost succeeded in measuring Vm directly by tunneling along
the giant axon with a glass micropipette (Fig. 4.1A). Eventually, both Hodgkin and Curtis
succeeded in this endeavor, albeit with other collaborators (Curtis and Cole 1940, Hodgkin
and Huxley 1939), and they found not only did Vm rise transiently toward zero, but surpris-
ingly there was a substantial overshoot, such that the membrane potential actually reversed
in sign at the peak of the action potential (Fig. 4.1B). This result brought into serious ques-
tion Bernstein’s simple idea of membrane breakdown and provided much food for thought
during the span of World War II when Hodgkin, Huxley, and many other scientists were
involved in the war effort.

Further insights into the nature of the membrane changes that occurred during an action
potential required the development of two important experimental techniques referred to as
the space clamp and the voltage clamp. The space clamp technique was developed by Mar-
mont (1949) and Cole (1949) as a means of maintaining a uniform spatial distribution of
membrane voltage Vm over the region of the cell where one was attempting to measure the
membrane current. This could not be accomplished using the intracellular capillary elec-
trode technique that had been developed to directly measure membrane potentials (Curtis
and Cole 1940, Hodgkin and Huxley 1939). The tip of the capillary electrode acted essen-
tially as a point source of current that would flow intracellularly along the axon, away from
the recording site and not just through the membrane near the electrode. To achieve space
clamping, the axon was threaded with a silver wire to provide a very low axial resistance,
thereby eliminating longitudinal voltage gradients.

In conjunction with the space clamp, Cole and colleagues were also developing the
voltage clamp technique that would allow the membrane potential to be maintained at any
desired voltage level. One might think this simply would be a matter of connecting a con-
stant voltage source across the cell membrane using a pair of electrodes, one inside and one
outside the cell. In practice, this simple approach doesn’t work particularly well because
of unpredictable voltage drops that occur in the solutions surrounding the electrodes. The
technique that was eventually developed involved two pairs of electrodes. One pair was
used to monitor the voltage across the membrane and the other was used to inject enough
current to keep the measured voltage constant. In order to keep pace with the rapid changes
in membrane permeability, the injected “clamping current” was controlled using a feedback
amplifier circuit (Fig. 4.2A).

In order to take full advantage of the space clamp and voltage clamp techniques, it
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Figure 4.1 First direct measurements of membrane potential in squid giant axon. (A) Capillary tube filled
with sea water has been carefully pushed down axon and serves as electrode to measure potential difference
across membrane (after Hille 1984). (B) Membrane voltage Vm (in mV ) during action potential. Time indicated
by 500 Hz sine wave on oscilloscope screen. (Adapted from Hodgkin and Huxley (1939); reprinted with
permission from Nature, Copyright 1939, Macmillan Magazines Limited.)

was necessary to develop a means for identifying the individual contributions to Iion from
different ion species. Work by Hodgkin and Katz (1949) had demonstrated that both sodium
and potassium made important contributions to the ionic current. This work also helped
explain the earlier puzzling observations that Vm overshoots zero during the action potential.
In contrast to Bernstein, who imagined the action potential to result from an unbounded
transient increase in permeability for all ions, Hodgkin and Katz realized that bounded
changes in permeabilities for different ions could account for the observed changes in Vm.
In their view, Vm would tend to the Nernst potential for the ion to which the membrane was
dominantly permeable, and this dominance could change with time. For a membrane at rest,
they agreed with Bernstein, that the potassium conductance is overriding, and hence the
resting potential is near EK (about 
 75 mV ). But during the action potential upstroke, they
postulated that a dramatic shift took place, causing the membrane to become much more
permeable to sodium than to potassium. Hence, Vm would tend toward ENa (about � 60 mV ),
and an overshoot of zero potential would be expected. They predicted and showed, for
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Figure 4.2 Quantitative measurements of ionic currents in the squid giant axon using space clamp and voltage
clamp techniques. (A) Schematic of setup. Axial wire to impose space clamp. Feedback amplifier for voltage
clamp delivers current to maintain membrane potential Vm at command level Vc (adapted from Hille 1984). (B)
Current (mA � cm2) versus time (msec). Low sodium concentration in bath eliminates INa, so that IK is recorded.
Then subtraction from total current in normal sodium yields INa . Clamping voltage is � 9 mV , from a holding
level of � 65 mV . (Replotted data from Hodgkin and Huxley (1952a).)

example, that the action potential amplitude depended critically on the concentration of
external sodium; decreased sodium led to a lower peak for the action potential. In the
theoretical section of their paper, they generalized the Nernst equation to predict the steady-
state potential when the membrane is permeable with different degrees to more than one
ionic species. This equation, modified from the earlier derivation by D. Goldman, is widely
applied in cell biology, and is usually called the Goldman-Hodgkin-Katz equation.

The “sodium hypothesis” was a major conceptual advance. However, the question of
how the permeability changes were dynamically linked to Vm was not completely addressed
until the papers of 1952. Hodgkin and Huxley realized that by manipulating ionic concen-
trations in the axon and its environment, the contributions of different ionic conductances
could be disentangled, provided that they responded independently to changes in Vm (a key
assumption). By eliminating sodium from the bathing medium, INa becomes negligible and
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so IK is measured directly. Then INa can be determined by subtraction of IK from the normal
response as shown in Fig. 4.2B. Using this approach, Hodgkin and Huxley (1952b) were
able to demonstrate convincingly that the current flowing across the squid axon membrane
had only two major ionic components, INa and IK , and that these currents were strongly
influenced by Vm .

4.3 The Mathematical Model

Given this historical perspective, we can now better appreciate the insights provided by the
HH model. In this section, we present the mathematical model itself. In subsequent sections
we describe some of the experiments that Hodgkin and Huxley performed while developing
their model, and we use GENESIS to simulate some of those experiments.

4.3.1 Electrical Equivalent Circuit

The HH model is based on the idea that the electrical properties of a segment of nerve
membrane can be modeled by an equivalent circuit of the form shown in Fig. 4.3. In the
equivalent circuit, current flow across the membrane has two major components, one as-
sociated with charging the membrane capacitance and one associated with the movement
of specific types of ions across the membrane. The ionic current is further subdivided into
three distinct components, a sodium current INa, a potassium current IK , and a small leakage
current IL that is primarily carried by chloride ions.
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Figure 4.3 Electrical equivalent circuit proposed by Hodgkin and Huxley for a short segment of squid giant
axon. The variable resistances represent voltage-dependent conductances (Hodgkin and Huxley 1952d).
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The behavior of an electrical circuit of the type shown in Fig. 4.3 can be described by a
differential equation of the form:

Cm
dVm

dt
� Iion � Iext � (4.1)

where Cm is the membrane capacitance, Vm is the intracellular potential (membrane po-
tential), Iion is the net ionic current flowing across the membrane, and Iext is an externally
applied current.

4.3.2 HH Conventions

Note that the appearance of Iion on the left-hand side of Eq. 4.1 and Iext on the right indicates
that they have opposite sign conventions. As the equation is written, a positive external cur-
rent Iext will tend to depolarize the cell (i.e., make Vm more positive) whereas a positive ionic
current Iion will tend to hyperpolarize the cell (i.e., make Vm more negative). This sign con-
vention for ionic currents is sometimes referred to as the physiologists’ convention and is
summarized by the phrase “inward negative,” meaning that an inward flow of positive ions
into the cell is considered a negative current. This convention perhaps arose from the fact
that when one studies an ionic current in a voltage clamp experiment, rather than measuring
the ionic current directly, one actually measures the clamp current that is necessary to coun-
terbalance it. Thus an inward flow of positive ions is observed as a negative-going clamp
current, hence explaining the “inward negative” convention. While reading later chapters,
it will be important to realize that internally GENESIS uses the opposite sign convention
(“inward positive”), since that allows all currents to be treated consistently, without making
a special case for ionic currents. In the Squid tutorial in this chapter, however, currents are
plotted using the physiologists’ convention.

While we’re on the topic of conventions, there are two more issues that should be dis-
cussed here. The first concerns the value of the membrane potential Vm. Recall that poten-
tials are relative; only potential differences can be measured directly. Thus when defining
the intracellular potential Vm, one is free to choose a convention that defines the resting in-
tracellular potential to be zero (the convention used by Hodgkin and Huxley), or one could
choose a convention that defines the extracellular potential to be zero, in which case the
resting intracellular potential would be around 
 70 mV . In either case the potential dif-
ference across the membrane is the same; it’s simply a matter of how “zero” is defined.
GENESIS allows the user to choose any convention they like; in the Squid tutorial we use
the HH convention that the resting membrane potential is zero.

The second convention we need to discuss concerns the sign of the membrane poten-
tial. The modern convention is that depolarization makes the membrane potential Vm more
positive. However, Hodgkin and Huxley (1952d) use the opposite sign convention (depo-
larization negative) in their paper. In the Squid tutorial, we use the modern convention that



36 Chapter 4. The Hodgkin-Huxley Model

depolarization is positive. At a conceptual level, the choice of conventions for currents and
potentials is inconsequential; however, at the implementation level it matters a great deal,
since getting one of the signs wrong will cause the model to behave incorrectly. The most
important thing in choosing conventions is to ensure that the choices are internally self-
consistent. One must pay careful attention to these issues when implementing a GENESIS
simulation using equations from a published model, since it may be necessary to convert
the published equations into a form that is consistent with the rest of the simulation.

4.3.3 The Ionic Current

The total ionic current Iion in Eq. 4.1 is the algebraic sum of the individual contributions
from all participating ion types:

Iion � ∑
k

Ik � ∑
k

Gk � Vm 
 Ek ��� (4.2)

Each individual ionic component Ik has an associated conductance value Gk (conductance
is the reciprocal of resistance, Gk � 1 � Rk) and an equilibrium potential Ek (the potential for
which the net ionic current flowing across the membrane is zero). The current is assumed to
be proportional to the conductance times the driving force, resulting in terms of the general
form Ik � Gk � Vm 
 Ek � . In the HH model of the squid giant axon, there are three such terms:
a sodium current INa , a potassium current IK , and a leakage current IL :

Iion � GNa � Vm 
 ENa � � GK � Vm 
 EK � � GL � Vm 
 EL ��� (4.3)

In order to explain their experimental data, Hodgkin and Huxley postulated that GNa
and GK changed dynamically as a function of membrane voltage. Today, we know that
the basis for this voltage-dependence can be traced to the biophysical properties of the
membrane channels that control the flow of ions across the membrane. It is important to
remember that at the time Hodgkin and Huxley developed their model, there was very little
information available about the biophysical structure of membrane or the molecular events
underlying neural excitability. The modern concept of ion-selective membrane channels
controlling the flow of ions across the membrane was only one of several competing ideas
at the time. An important accomplishment of the HH model was to rule out several of the
alternative ideas that had been proposed concerning membrane excitability.

Although Hodgkin and Huxley did not know about membrane channels when they de-
veloped their model, it is convenient for us to describe the voltage-dependent aspects of their
model in those terms. The macroscopic conductances Gk of the HH model can be thought
of as arising from the combined effects of a large number of microscopic ion channels em-
bedded in the membrane. Each individual ion channel can be thought of as containing a
small number of physical gates that regulate the flow of ions through the channel. An indi-
vidual gate can be in one of two states, permissive or non-permissive. When all of the gates



4.3. The Mathematical Model 37

for a particular channel are in the permissive state, ions can pass through the channel and
the channel is open. If any of the gates are in the non-permissive state, ions cannot flow and
the channel is closed.1

The voltage-dependence of ionic conductances is incorporated into the HH model by as-
suming that the probability for an individual gate to be in the permissive or non-permissive
state depends on the value of the membrane voltage. If we consider gates of a particular type
i, we can define a probability pi, ranging between 0 and 1, that represents the probability of
an individual gate being in the permissive state. If we consider a large number of channels,
rather than an individual channel, we can also interpret pi as the fraction of gates in that
population that are in the permissive state and � 1 
 pi � as the fraction in the non-permissive
state. Transitions between permissive and non-permissive states in the HH model are as-
sumed to obey first-order kinetics:

d pi

dt � αi � V ��� 1 
 pi � 
 βi � V � pi � (4.4)

where αi and βi are voltage-dependent rate constants describing the “non-permissive to per-
missive” and “permissive to non-permissive” transition rates, respectively. If the membrane
voltage Vm is “clamped” at some fixed value V , then the fraction of gates in the permissive
state will eventually reach a steady-state value (i.e., d pi � dt � 0) as t � ∞ given by:

pi � t � ∞ � V ��� αi � V �
αi � V � � βi � V � � (4.5)

The time course for approaching this equilibrium value is described by a simple exponential
with time constant τi � V � given by:

τi � V ��� 1
αi � V � � βi � V � � (4.6)

When an individual channel is open (i.e., when all the gates are in the permissive state),
it contributes some small, fixed value to the total conductance and zero otherwise. The
macroscopic conductance for a large population of channels is thus proportional to the
number of channels in the open state which is, in turn, proportional to the probability that
the associated gates are in their permissive state. Thus the macroscopic conductance Gk due
to channels of type k, with constituent gates of type i, is proportional to the product of the
individual gate probabilities pi:

Gk � ḡk ∏
i

pi � (4.7)

1Although it would seem natural to speak of gates as being open or closed, a great deal of confusion can
be avoided by consistently using the terminology permissive and non-permissive for gates while reserving the
terms open and closed for channels.
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where ḡk is a normalization constant that determines the maximum possible conductance
when all the channels are open.

We have presented Eqs. 4.4–4.7 using a generalized notation that can be applied to
a wide variety of conductances beyond those found in the squid axon. To conform to the
standard notation of the HH model, the probability variable pi in Eqs. 4.4–4.6 is replaced by
a convenient notation in which the variable name is the same as the gate type. For example,
Hodgkin and Huxley modeled the sodium conductance using three gates of a type labeled m
and one gate of type h. Applying Eq. 4.7 to the sodium channel using both the generalized
notation and the standard notation yields:

GNa � ḡNa pm
3 ph � ḡNa m3 h � (4.8)

Similarly, the potassium conductance is modeled with four identical “n” gates:

GK � ḡK pn
4 � ḡK n4 � (4.9)

Summarizing the ionic currents in the HH model in standard notation, we have:

Iion � ḡNa m3 h � Vm 
 ENa � � ḡK n4 � Vm 
 EK � � ḡL � Vm 
 EL ��� (4.10)

dm
dt � αm � V ��� 1 
 m � 
 βm � V � m � (4.11)

dh
dt � αh � V ��� 1 
 h � 
 βh � V � h � (4.12)

dn
dt � αn � V ��� 1 
 n � 
 βn � V � n � (4.13)

The task that remains is to specify exactly how the six rate constants in Eqs. 4.11–4.13
depend on the membrane voltage. Then Eqs. 4.10–4.13, together with Eq. 4.1, completely
specify the behavior of the membrane potential Vm in the model.

4.4 Voltage Clamp Experiments

How did Hodgkin and Huxley go about determining the voltage-dependence of the rate
constants α and β that appear in the kinetic equations Eqs. 4.11–4.13? How did they deter-
mine that the potassium conductance should be modeled with four identical n gates, but that
the sodium conductance required three m gates and one h gate? In order to answer these
questions, we need to look in some detail at the results of the voltage clamp experiments
carried out by Hodgkin and Huxley.
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Figure 4.4 Experimental voltage clamp data illustrating voltage-dependent properties of the potassium con-
ductance in squid giant axon. Data points are shown as open circles. Solid lines are best-fit curves of the form
given in Eq. 4.20. The command voltage Vc (mV ) is shown on the right-hand side of each curve. Redrawn from
Hodgkin and Huxley (1952d).

4.4.1 Characterizing the K Conductance

Figure 4.4 shows some voltage clamp results obtained by Hodgkin and Huxley in which
the time course of the potassium conductance is plotted for several different values of the
command voltage. The most obvious trend in the data is that the steady-state K conductance
level increases with increasing command voltage. A second, somewhat more subtle trend is
that the rising phase of the conductance change becomes more rapid with increasing depo-
larization. For small depolarizations on the order of 20 mV , the half-maximum point occurs
about 5 msec after the onset of the change in voltage, whereas for large depolarizations on
the order of 100 mV , the half-maximum point is reached in about 2 msec.

Hodgkin and Huxley incorporated these voltage-dependent properties of the K conduc-
tance into a mathematical model by first writing down an equation that describes the time
evolution of a first-order kinetic process:

dn
dt � αn � V ��� 1 
 n � 
 βn � V � n � (4.14)
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In the experiments illustrated in Fig. 4.4, the membrane potential starts in the resting state
(Vm = 0) and is then instantaneously stepped to a new clamp voltage Vc. What is the time
course of the state variable n under these circumstances? Initially, with Vm = 0, the state
variable n has a resting value given by Eq. 4.5,

n∞ � 0 ��� αn � 0 �
αn � 0 � � βn � 0 � � (4.15)

When Vm is clamped to Vc, n will eventually reach a steady-state value given by

n∞ � Vc ��� αn � Vc �
αn � Vc � � βn � Vc � � (4.16)

The solution to Eq. 4.14 that satisfies these boundary conditions is a simple exponential of
the form

n � t ��� n∞ � Vc � 
 � n∞ � Vc � 
 n∞ � 0 � � e ! t " τn � (4.17)

where
τn � Vc ��� 1

αn � Vc � � βn � Vc � � (4.18)

Given Eq. 4.17, which describes the time course of n in response to a step change in
command voltage, one could try fitting curves of this form to the conductance data shown
in Fig. 4.4 by finding values of n∞ � 0 � , n∞ � Vc � , and τn � Vc � that give the best fit to the data for
each value of Vc. Figure 4.5 illustrates this process, using some simulated conductance data
generated by the Hodgkin-Huxley model. Recall that n takes on values between 0 and 1, so
in order to fit the conductance data, n must be multiplied by a normalization constant ḡK that
has units of conductance. For simplicity, the normalized conductance Gk � ḡK is plotted. The
dotted line in Fig. 4.5 shows the best-fit results for a simple exponential curve of the form
given in Eq. 4.17. Although this simple form does a reasonable job of capturing the general
time course of the conductance change, it fails to reproduce the S-shaped (sigmoidal) trend
in the data. This discrepancy is most apparent near the onset of the conductance change,
shown in the inset of Fig. 4.5. Hodgkin and Huxley realized that a more sigmoidal time
course could be generated if they considered the conductance to be proportional to a higher
power of n. Figure 4.5 shows the results of fitting the conductance data using successively
higher powers p. Using this sort of fitting procedure, Hodgkin and Huxley determined that
a reasonable fit to their K conductance data could be obtained using a value of p � 4. Thus
they arrived at a description for the K conductance given by

GK � ḡK n4 � (4.19)

in which case, the equation describing the conductance change and satisfying the appropri-
ate boundary conditions is

GK �$#%� G∞ � Vc � � 1 " 4 
 � � G∞ � Vc � � 1 " 4 
 � G∞ � 0 � � 1 " 4 � e ! t " τn & 4 � (4.20)
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Figure 4.5 Best-fit curves of the form Gk ' ḡKnp (p = 1–4) for simulated conductance vs. time data (open
circles). The inset shows an enlargement of the first millisecond of the response. The initial inflection in the
curve cannot be well fit by a simple exponential (dotted line) that rises linearly from zero. Successively higher
powers of p (p ' 2: dot-dashed; p ' 3: dashed line) result in a better fit to the initial inflection. In this case,
p ' 4 (solid line) gives the best fit.

where G∞ � 0 � is the initial conductance and G∞ � Vc � is the steady-state conductance value
attained when the command voltage is stepped to Vc. The solid lines in Fig. 4.4 show the
best-fit results obtained by Hodgkin and Huxley for their data.

4.5 GENESIS: Voltage Clamp Experiments

In order to develop a better understanding of the procedures outlined above we will use the
Squid tutorial to simulate a voltage clamp experiment of the type that Hodgkin and Huxley
used to characterize the potassium conductance. Change to the Scripts/squid directory and
start the Squid tutorial by typing “ (*),+-)-.0/*.21	3	45/76 .” When the tutorial first loads, the
simulation is in the current clamp mode. To switch to the voltage clamp mode, click the8:9 (;(*<%)$=->0<;?A@:B-CED%>	<;?A@:B$F 9 6;) button. The first simulation experiment will be to hold the
membrane potential at the resting potential for a couple of milliseconds (so we can see the
baseline) and then rapidly clamp it to 50 mV above the resting potential. In this simulation,
we measure voltages with respect to the resting potential, so we define the rest potential to
be 0 volts, rather than 
 70 mV �
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Figure 4.6 The time course of the voltage clamp signal. These quantities can be set in the GAHJILKNM�OQPSRQITMVUAWX H�YJP control panel.

Figure 4.6 defines the quantities that are set by the = 9 <7ZE?	(*)\[;<;?]@*B^F 9 6*) control
panel. Make sure they are set to the following:

_E9 <06-/A+E(`= 9 <7ZE?0(;) acbd@-=_E9 <06-/A+E( 8 /N@e) agfh@i.,)E>j;k )*l,B%4e<:.7)2= 9 <7ZE?0(;)`acbd@-=j;k )*l,B%4e<:.7) 8 /N@e) acbd@i.,)E>
[*<%?]@:B^= 9 <7ZE?	(*) agm%bd@E=
[*<%?]@:B 8 /N@e) agf%bd@�.7)E>

Now run the simulation by clicking n;oE1	o 8 followed by n0p:q . Your display should look sim-
ilar to that shown in Fig. 4.7. The plot at the upper left shows both the command voltage
which is applied to the voltage clamp circuitry and the resulting membrane potential. If
everything is working properly, these two curves should be almost identical, since the idea
of the voltage clamp is that the membrane voltage should exactly follow the command volt-
age. The lower left plot shows the injection current (clamp current) used to maintain the
desired voltage. The time course of the clamp current has three components: a very brief
positive-going spike at the onset of the voltage change related to the charging of the mem-
brane capacitance, a transient negative (inward) current associated with the sodium con-
ductance, and finally a sustained positive (outward) current associated with the potassium
conductance. The quantities shown in the two left panels are experimental observables and
were accessible to Hodgkin and Huxley in their experiments, whereas the two right panels
on your screen show quantities that are not directly observable (channel conductances and
channel currents), but which we can plot in the simulation by “peeking” at the internal state
of the model. In thinking about the data that Hodgkin and Huxley had to work with, keep
in mind that the observables are confined to the two left panels.
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Figure 4.7 A voltage clamp experiment using the Squid tutorial. Upper left: membrane voltage and clamp
voltage; lower left: clamp current; upper right: Na and K channel conductances; lower right: Na and K channel
currents.

In order to study the K conductance alone, Hodgkin and Huxley replaced Na in the ex-
ternal bathing solution with an impermeant ion, thus eliminating most of the Na contribution
to the measured currents. We have an even easier way of getting rid of the sodium current in
the simulation: click the toggle button labeled “ q:?r>]se?t+;+E)*<h4%+;ue< 9 >]vE)%6 ,” so that it reads
“ q:?w>Ase?t+;+-);<xu-< 9 >]vE)06 ,” Now rerun the simulation. Note that the clamp current no longer
shows the transient negative (inward) current associated with the Na conductance.

Now let’s do a voltage clamp series to characterize the K conductance. We’ll start with
a large voltage step (so we can adjust graph scales) and work our way down through a series
of smaller values. Change the [;<;?]@*Bc= 9 <	Z:?0(*) dialog box value to 100 mV and rerun the
simulation. (Don’t forget to hit “Return” after changing the contents of the dialog box!)
Notice that values in some of the plots go off scale. To correct this situation, we can use
the .%>	?;<%) buttons in the upper left-hand corner of each display. For example, to adjust
the scale for the clamp current, click the .0>0?;<0) button on the lower left graph, set y,@z?0{ to
30, and then click |E}	q;o . If you want, you can adjust the scales of the other graphs in the
same manner. Since we are going to perform a series of simulations and we want to see all
the results plotted simultaneously, we’ll put the graphs into overlay mode (otherwise they
get cleared on each reset). Click the toggle button labeled “ }	~:) k <%?	yg}7�;� ,” so that it reads
“ }7~:) k <;?7yg}	q ,” Now we’re ready to perform the next trial in the voltage series. Change the
[*<%?]@*Bc= 9 <	ZE?	(*) to 80 mV , click on n*o:1	o 8 , and rerun the simulation. You should see the
new data superimposed on the old data. Now continue the series with clamp voltages of 60,



44 Chapter 4. The Hodgkin-Huxley Model

40, and 20 mV . When you are finished, the right side of your display should look similar to
Fig. 4.8.

Figure 4.8 Plots of K conductance vs. time for a simulated voltage clamp series with Na channels blocked.
Responses are shown for five values of the clamp voltage: 20, 40, 60, 80 and 100 mV . Compare with the
experimental data in Fig. 4.4.

4.6 Parameterizing the Rate Constants

Using this procedure, Hodgkin and Huxley were able to determine the steady-state conduc-
tance values n∞ � Vc � and time constants τn � Vc � as a function of command voltage. Once
values for n∞ � Vc � and τn � Vc � have been determined by fitting the conductance data, values
for αn � Vc � and βn � Vc � can be found from the following relationships:

αn � V �i� n∞ � V �
τn � V � (4.21)

βn � V ��� 1 
 n∞ � V �
τn � V � � (4.22)

The open circles in Fig. 4.9 represent the experimentally determined values of n∞ � Vc � ,
τn � Vc � , αn � Vc � , and βn � Vc � as a function of command voltage. Hodgkin and Huxley then
found smooth curves that went through these data points. The empirically determined ex-
pressions for the rate constants αn and βn are:

αn � V ��� 0 � 01 � 10 
 V �
exp � 10 ! V

10 � 
 1
(4.23)

βn � V ��� 0 � 125 exp � 
 V � 80 ��� (4.24)
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Figure 4.9 Voltage dependence of K conductance parameters in the HH model. (A) Steady-state value
n∞ � V � ; (B) time constant τn � V � (C) rate constant α � V � ; and (D) rate constant β � V � . Open circles in (A) and
(B) are best-fit parameters from voltage clamp data of the type shown in Fig. 4.4. Open circles in (C) and (D)
are computed from Eqs. 4.21–4.22. Solid lines in (C) and (D) are empirical fits to the rate constant data of the
form given in Eqs. 4.23–4.24. Solid lines in (A) and (B) are then calculated from Eqs. 4.16 and 4.18.

If you compare these expressions with Eqs. 12–13 in Hodgkin and Huxley (1952d), you will
note that the sign of the membrane voltage has been changed to correspond to the modern
convention (see Sec. 4.3.2).

4.7 Inactivation of the Na Conductance

There is an important qualitative difference between the Na and the K conductance changes
that are observed in the squid axon under voltage clamp conditions. Namely, in response to
a sustained voltage clamp step, the change in Na conductance is transient and only lasts a
few milliseconds, whereas the change in K conductance is sustained and lasts as long as the
voltage clamp is maintained. This effect can be seen in the upper right panel of Fig. 4.7.
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To explore the Na conductance change in more detail, run the Squid simulation in volt-
age clamp mode with qE?g>Ase?,+%+-);<E.�4%+;ue< 9 >]vE)%6 and ��>]s-?,+%+-)*<:.�ue< 9 >]vE)%6 (use the tog-
gle buttons on the control form). Set the maximum simulation time to 10 msec in the
1:/Q@:4-<;?	Z-/ 9 +g[ 9 +:Z k:9 < panel and set the following values in the = 9 <7ZE?	(*)\[;<;?]@*B^F 9 6*)
control panel dialog boxes:

_E9 <06-/A+E(`= 9 <7ZE?0(;) acbd@-=_E9 <06-/A+E( 8 /N@e) agfh@i.,)E>j;k )*l,B%4e<:.7)2= 9 <7ZE?0(;)`acbd@-=j;k )*l,B%4e<:.7) 8 /N@e) acbd@i.,)E>
[*<%?]@:B^= 9 <7ZE?	(*) agm%bd@E=
[*<%?]@:B 8 /N@e) ac�d@i.,)E>

Place the graphs in overlay mode (use the }	~:) k <%?	yg}7q toggle button in the 1:/Q@:4-<;?	Z-/ 9 +
[ 9 +:Z k:9 < panel), and observe the magnitude and time course of the Na conductance change
for clamp voltages between 10 and 70 mV . You will note that the magnitude of the peak
conductance increases with increasing voltage and that the time constants of the rising and
falling phases generally become shorter (faster) with increasing voltage.

In order to model these transient conductance changes, Hodgkin and Huxley needed
to use a system of differential equations that was at least second-order. Using the same
strategy as for the K conductance, they chose to do this by building up the higher-order
response dynamics using a set of variables such that each obeys first-order kinetics. To
describe the activation and inactivation phases of the Na conductance change requires two
separate state variables, which Hodgkin and Huxley labeled m (the activation variable) and h
(inactivation). In order to accurately capture the initial inflection in the conductance change,
they found that they had to raise the m variable to the third power. Thus they arrived at a
description for the Na conductance given by

GNa � ḡNa m3 h � (4.25)

Following a procedure very similar to that outlined previously for the K conductance,
Hodgkin and Huxley determined the voltage-dependence of the rate constants that gov-
ern the activation and inactivation variables. The empirically determined expressions that
they arrived at for describing αm, βm, αh and βh are:

αm � V ��� 0 � 1 � 25 
 V �
exp � 25 ! V

10 � 
 1
� (4.26)

βm � V ��� 4 exp � 
 V � 18 ��� (4.27)

αh � V ��� 0 � 07 exp � 
 V � 20 ��� (4.28)
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βh � V �i� 1
exp � 30 ! V

10 � � 1
� (4.29)

Again, to be consistent with the modern sign convention used in GENESIS, we have flipped
the sign of the voltage relative to the original Eqs. 20, 21, 23, 24 in Hodgkin and Huxley
(1952d).

4.8 Current Injection Experiments

As we have seen, the form of the HH model and the values of the model parameters were
all empirically determined from voltage clamp data. There was no a priori guarantee that
the model would necessarily be successful in predicting the behavior of the squid axon
under other experimental conditions. Thus it must have been extraordinarily satisfying for
Hodgkin and Huxley to see their model produce realistic-looking action potentials when
they numerically simulated the response to superthreshold current injections.

Run the Squid simulation in current clamp mode. Make sure that both the Na and K
channels are unblocked. Set the maximum simulation time to 50 msec and set the following
values in the [,4 k;k )7+*Zc[*<%?]@:B\F 9 6;) control panel:

� ?:.7)^[74 k;k )7+:Z acb���b24E�j 4-<E.7)`[74 k%k ),+:Z�� acb��T��4E�
},+z.7)0Z$|E)*<%?	y�� agm���bh@i.,)E>j 4-<E.7)d�5/760Z0s�� ac�;b��Vbh@�.7)E>j 4-<E.7)`[74 k%k ),+:Zgf acb���b24E�
},+z.7)0Z$|E)*<%?	yrf acb���bh@i.,)E>j 4-<E.7)d�5/760Z0s�f acb���bh@i.,)E>j 4-<E.7)dF 9 6;) ag1:/A+E(*<%) j 4-<E.,)

With this set of parameters, you should observe a short train of action potentials in response
to the injected current. Section 4.9 provides several suggested exercises for exploring prop-
erties of the HH model under current clamp conditions, including threshold behavior, re-
fractory periods, depolarization block and anode break excitation.

4.9 Exercises

1. In voltage clamp mode, generate plots of peak conductance versus clamp voltage and
peak current versus clamp voltage for the Na and K currents. (Characterize the Na
and K components individually by using the appropriate toggle button to block the
other component.) Select clamp voltages that cover the range from 40 mV below
resting potential to 140 mV above resting potential. For each case, determine the
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peak conductance and current from the graphs and use them in your plots. What is
the general shape of the conductance vs. voltage plots? What is the general shape of
the current vs. voltage plots? What are the reversal potentials for Na and K?

2. In voltage clamp mode, examine the effect of giving different hyperpolarizing pre-
conditioning pulses prior to the voltage clamp step. (Suggested parameters: holding
voltage = 0 mV ; holding time = 5 msec; pre-pulse voltage = 0 to 
 50 mV in 10 mV
steps; pre-pulse time = 5 msec; clamp voltage = � 40 mV ; clamp time = 20 msec.)
What is the effect of the pre-conditioning pulse on the Na conductance? On the K
conductance? In the context of the HH model, describe the mechanism responsible
for this effect. How might this relate to the “after-hyperpolarization” that follows an
action potential?

3. In current clamp mode, find the minimum current (threshold current) for eliciting a
single action potential. (Suggested settings: base current = 0 µA; onset delay 1 =
5 msec; pulse width 1 = 15 msec; simulation time = 20 msec.) How “sharp” is the
threshold phenomenon — can you find a value of the injected current that gives a
“half-height” action potential? If the threshold appears to be “all-or-none,” report the
minimum fractional change in injection current that you tested (e.g., 1 part in 100,
1-in-1000, etc.).

4. The rheobase current is the minimum current that will elicit repetitive firing (i.e.,
generate a train of action potentials). What is the rheobase current for the Squid
model? (Suggested settings: base current = 0 µA; onset delay 1 = 5 msec; pulse width
1 = 95 msec; simulation time = 100 msec.) How sharp is the transition from single
spike generation to repetitive firing? — Can you find a value of the injected current
that generates two action potentials, but doesn’t fire repetitively?

5. By counting the number of spikes generated in a 100 msec window, construct a plot
of firing frequency vs. injected current, starting at the rheobase current and working
up to a value of about 10 times rheobase. (Suggested settings: base current = 0 µA;
onset delay 1 = 0 msec; pulse width 1 = 100 msec; simulation time = 100 msec.)
How much does a 10-fold increase in injected current increase the firing rate? What
happens if you increase the injected current to 100 times rheobase?

6. In problem 3 we saw that single action potentials can be elicited by small sustained
levels of current injection. Single action potentials can also be elicited by transient
pulses of current injection, even when the duration of the pulse is shorter than the
duration of the action potential. As the length of the pulse decreases, however, the
amplitude necessary to elicit an action potential increases. Generate a plot of single
spike threshold current vs. pulse duration for pulse widths between 0.1 and 2.0 msec.
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Is there a simple relationship between pulse width and threshold current? (Use an
integration time step of 0.01 msec for this study.)

7. In this problem you will investigate the refractory period that follows each action
potential. The absolute refractory period is the time interval during which no stim-
ulus, regardless of strength, is capable of generating another action potential in the
axon. The relative refractory period is the time interval during which a second ac-
tion potential can be generated, but which requires an increased stimulus amplitude
in order to do so. Using the two-pulse capability of the current clamp mode, map
out the absolute and relative refractory periods of the model by generating a plot
of threshold amplitude vs. latency. Use a pulse width of 1 msec. How long is the
absolute refractory period? The relative refractory period? (When mapping out the
absolute refractory period, make sure that the responses you call “spikes” are true
“all-or-none” phenomena.)

8. All of the injection pulses in the previous current clamp problems have been depo-
larizing. In this problem you will look at the effect of hyperpolarizing current pulses.
Set the pulse amplitude to 
 0 � 1 µA and set the pulse duration to 5 msec. What hap-
pens? What is the threshold, in terms of current magnitude and pulse duration, for
eliciting this so-called anode break excitation? What mechanisms in the model are
responsible for this behavior? (Hint: look at the time course of the state variables m,
n and h, using the 1	Z:?	Z:) j < 9 Z^=e/;.%/]u-<%) toggle button.)

9. Set the base current level just above rheobase to establish repetitive firing. Now
superimpose a 1 msec duration, 0.1 µA current pulse at various latencies ranging from
5.0 to 15.0 msec. Can you find a latency value that abolishes the repetitive firing?
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