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Temporal Interactions Between
Postsynaptic Potentials

IDAN SEGEV

6.1 Introduction

The previous two chapters have introduced two of the essential ingredients for the descrip-
tion of neuronal behavior. Chapter 5 has discussed the passive propagation of synaptic
inputs through the dendritic tree to the soma and the initial axon segment. Here, voltage-
activated channels (Chapter 4) respond to produce the action potentials that are conducted
along the axon, resulting in a release of neurotransmitters at the presynaptic terminals. The
present chapter deals with the response of the postsynaptic region to this input — namely,
with the development of the postsynaptic potential (PSP).

Synaptic inputs from different presynaptic sources converge onto the postsynaptic neu-
ron; typically onto its soma-dendritic membrane surface. There these inputs interact with
each other and are integrated before output is produced in the axon. The number of synaptic
inputs, their characteristics, as well as their spatial and temporal distribution vary in differ-
ent cell types and in the same cell under various conditions. Some neurons receive only
a few synaptic inputs whereas a typical neuron in the mammalian central nervous system
(CNS) may receive several thousands of such inputs. Nevertheless, the principles that gov-
ern the interactions among postsynaptic potentials both in time and in space is relatively
well understood. In this chapter, we focus on the temporal aspect of this interaction.

Here we treat the events that take place locally, at the postsynaptic membrane. We
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80 Chapter 6. Temporal Interactions Between Postsynaptic Potentials

analyze the initiation of the postsynaptic potential following the opening of synaptic chan-
nels (i.e., a conductance change) induced by the release of the neurotransmitter from the
presynaptic terminal. First, the basic (R-C) electrical model of a neuronal membrane is
introduced. Then a synaptic branch is added to this analog circuit and the production of the
PSP is discussed. The case of several inputs impinging on the same patch of membrane at
different times is also considered. Finally, we use the GENESIS Neuron tutorial together
with several suggested exercises in order to gain a better understanding of the significance
of the temporal interaction between several excitatory and/or inhibitory synapses for the
input-output function of neurons.
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Figure 6.1 Equivalent circuits for electrical model of an isopotential nerve membrane. In (A), the passive
(voltage- and time-independent) membrane elements are shown. The resting conductance grest represents the
total conductance of all the transmembrane ion channels that are opened at the resting potential Erest . The
capacitance Cm represents the non-channel part of this membrane, and Vm is the voltage difference between the
cell interior and the cell exterior. In (B), an additional conductive branch is added in parallel with the passive
elements to represent the synaptic channels in the membrane. The total time-dependent conductance change
induced by the activation of the synapse is denoted by gsyn; the associated reversal potential (the synaptic
battery) is Esyn. Ipulse represents an externally applied current injection pulse.

6.2 Electrical Model of a Patch of Membrane

Figure 6.1 depicts the electrical circuit for a small isopotential patch of membrane that
consists of two types of transmembrane channel. The passive channels are modeled by
a constant (time- and voltage-independent) conductance (grest , in siemens = 1 � Ω) in series
with a fixed voltage source (Erest , in volts) that designates the resting potential. The synaptic
(chemically gated) channels are modeled by a separate conductive branch consisting of
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a time-dependent conductance gsyn � t � in series with a constant voltage source Esyn, the
reversal potential of the synaptic current. In parallel with these conductive branches there is
the capacitive branch Cm which models the dielectric properties of the lipid bilayer. Notice
the correspondence between this figure and the “generic” neural compartment discussed in
Chapter 2 and shown in Fig. 2.3. From this circuit, it is clear that the voltage difference
Vm across the membrane depends on the values of the conductances and batteries involved
in the circuit; Vm is expected to change when the values of the conductances grest and gsyn

change. This is exactly what happens when a synapse is activated and the transmitter-gated
channels are opened at the postsynaptic membrane. To clarify the principles that govern
the voltage changes in the circuit of Fig. 6.1B, let us start with the simple case in which a
constant current Ipulse is injected through an electrode across a patch of a membrane that
consists of only passive channels. The corresponding model is depicted in Fig. 6.1A.

6.2.1 Voltage Response of Passive Membrane to a Current Pulse

When the membrane patch does not contain synaptic channels (or when all the synaptic
channels are closed, i.e., gsyn � 0), the circuit in Fig. 6.1B collapses into a simple R-C
circuit (Fig. 6.1A). The value of grest is then the input conductance (1/input resistance) of
this membrane patch (hereafter designated as the “compartment”). As previously noted,
Erest is the resting potential of this compartment (it is the reversal potential of the ions that
flow through the passive channels). The value of Erest is described by the classical equation
of Goldman (see, for example, Jack et al. 1975). The Goldman equation shows that when
different ion species (e.g., K � , Na � , Ca � 2, Cl � ) flow through transmembrane channels, the
equilibrium potential (the resting potential) is determined by the relative permeability to the
different ions and by their gradients across the membrane. As seen by the polarity of Erest ,
the resting potential in nerve cells is negative; namely, the interior of nerve cells is more
negative than the exterior.

The membrane capacitance Cm represents the effect of the lipids of the membrane; they
are poor conductors and are able to store charges (ions) on either side of the membrane. The
membrane resistance (also, in the isopotential case, the input resistance) is Rm � 1 � grest .

When no current is injected into the compartment (and, therefore, the net current across
the membrane is zero), the membrane voltage Vm remains at the resting potential. How-
ever, when a current pulse Ipulse is injected between the two sides of the membrane, the
voltage across the membrane changes. The charging of the membrane capacitance by in-
jection currents may be represented by an equation analogous to Eq. 4.1, which we used for
the Hodgkin-Huxley model. According to Kirchoff’s current law, the net current leaving
the compartment (the algebraic sum of the capacitive current flow IC � CmdVm � dt which
charges the membrane capacitance and the ionic current Irest that flows across the membrane
through the resting channels) should equal the injected current Ipulse. Hence,
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IC � Irest � Ipulse � (6.1)

Note that, as we have done in Chapters 4 and 5, we are using the “physiologists’ convention”
in which the ionic channel current (Irest ) is considered to be positive when positive charge
flows out of the compartment. For this reason, Irest and the inward current Ipulse appear on
opposite sides of the equation. By analogy with Eq. 4.3, the ionic current at rest Irest is
grest � Vm � Erest � . Equation 6.1 then becomes

Cm
dVm

dt � grest � Vm � Erest � � Ipulse � (6.2)

For simplicity, from now on we will set Erest to zero, as we have done in the previous two
chapters. This way, all voltage displacements and batteries are measured with respect to the
resting potential. Equation 6.2 is now

Cm
dVm

dt � grestVm � Ipulse � (6.3)

If we assume that the current injection pulse begins at time t � 0, when Vm � 0 � � 0, we may
solve Eq. 6.3 by separating variables and obtain:

Vm � t � � Ipulse

grest
� 1 � e � grest t � Cm � (6.4)

or:

Vm � t � � IpulseRm � 1 � e � t � τm � � (6.5)

In Eq. 6.5, we have defined the membrane time constant to be τm � Cm � grest � RmCm.
For an isolated isopotential compartment, the input resistance (Sec. 5.4.4) is equal to the
membrane resistance Rm. As noted in Chapter 5, this is given by the specific resistance of
the membrane RM divided by the surface area A of the compartment. Because nerve cells
vary in size and in the specific properties of the membrane, the value of Rm also varies
in different cell types and may range from less than 1 MΩ to several hundred MΩ (M �
106). However, from the definitions of CM and RM (Eqs. 5.4 and 5.5), we can write τm �
RmCm � RMCM (Eq. 5.8). Thus, although the input resistance and membrane capacitance
individually vary with the cell area, the time constant is independent of area. Hence, the
time constant of nerve cells does not depend on the dimensions of the cell but only on the
properties of its membrane. As also mentioned in Chapter 5, CM is close to 1 µF � cm2 in
most biological membranes. However, as the value of RM varies among different cell types
(the density of channels that are opened at rest varies) the time constant of these cells is
different and may range from under 1 msec to several hundred milliseconds.

When calculating values of τm, it is important to be consistent in one’s choice of units.
In the SI (MKS) system of units, resistance and capacitance are measured, respectively, in
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ohms and farads, and RmCm has units of seconds. However, it is often more convenient to
use “physiological units” in which resistance is measured in KΩ (kilohms) and capacitance
is measured in µF . The corresponding units for RM and CM would then be KΩ � cm2 and
µF � cm2, meaning that τm will be expressed in milliseconds. We use these units in this
chapter, and in the Neuron tutorial. The relationship between SI and physiological units is
discussed in more detail in Chapter 13, and summarized in Table 13.1. As discussed below
and in Chapter 5, the time constant and the input resistance have important consequences
for the electrical behavior of nerve cells and many electrophysiological experiments are
aimed at estimating their values for the cell under study.

Observing Eq. 6.5, one sees that during the application of a positive current pulse to
the interior of the cell the membrane potential increases (depolarizes) exponentially from
the resting potential (0) toward the maximal (steady-state) value IpulseRm. This is shown in
Fig. 6.2. The rise is governed by the single time constant τm, which is equal to the time at
which the voltage rises to 63% (1 � e � 1) of its maximal (steady-state) value. The steady-
state value is reached when the current is injected for an infinitely long duration (i.e., when
t � ∞). Then, the capacitive (time-dependent) current is zero and the membrane current
is solely a resistive (ohmic) current. In the other extreme, when the duration of the pulse
is very short, most of the injected current flows through the capacitance. In this case, the
voltage response is almost independent of the input resistance of the cell, since very little
current flows through grest . The latter statement can be proven by expanding Eq. 6.5 in a
Taylor’s series near t � 0, neglecting nonlinear terms in t.

Until now, we have analyzed the development of membrane voltage while the current
injection is still on. Suppose that the current pulse lasts for a duration of t � tpulse; what
happens at t � tpulse? Now the external current source terminates and, therefore, the net
current through the membrane is zero. In this case, the charge on the membrane capacitance
dissipates by flowing through the resting ionic channels and

Cm
dVm

dt � grestVm � 0; t � tpulse � (6.6)

The solution is

Vm � t � � Vm � tpulse � e ��� t � tpulse � � τm ; t � tpulse � (6.7)

Thus, following the termination of the current pulse, the voltage decays (repolarizes)
exponentially from the maximal value Vm � tpulse), obtained at the end of the rectangular
current pulse, toward the resting level. It decays with the same time constant (τm) as it rises
during the current pulse. If you wish, you may use the Cable tutorial from Chapter 5, or
the Neuron tutorial which we use in this chapter to verify that the results are as shown in
Fig. 6.2.

Before leaving this section, let us briefly mention the implications of τm and Rm for
the integrative capabilities of nerve cells. As demonstrated in Fig. 6.2, the time constant
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Figure 6.2 The response of the passive circuit in Fig. 6.1 to a positive rectangular current pulse. The current
Ipulse is given for a duration of 20 msec (bottom trace) and the resultant voltage Vm across the membrane is
shown above. The input resistance of the cell is denoted by Rm ( � 1

�
grest ). The time constant (τm � RmCm)

of this cell was set to 5 msec. Hence, Vm approaches the maximal (steady-state) value IpulseRm. As expected
from Eq. 6.5, Vm reaches � 1 � 1

�
e � , or 63% of its maximal value at t � τm. This time constant also governs

the exponential decay of Vm at the end of the current application. Then, Vm � V0e ��� t � tpulse �
	 τm , where V0 is the
maximal voltage reached at t � tpulse � 20 msec.

(Eqs. 6.5 and 6.8) implies that the buildup of voltage at the postsynaptic membrane as a
response to an input takes time, and that when the input ends the membrane “remembers”
the effect of the input for some time (for several units of the time constant) until the decaying
voltage approaches the resting potential. Hence, a cell with a long time constant (say,
30 msec) will sum successive inputs that arrive every 5 msec (for example) better than a
cell with a shorter time constant (say, 5 msec). The voltage change will remain for a longer
duration in the cell with the longer τm following an input. The other parameter, the input
resistance Rm, implies that for a given (long-lasting) input, the cell with the larger Rm value
will produce a larger voltage displacement (Fig. 6.2 and Eq. 6.5). Hence, a more powerful
input will be required for a similar displacement of Vm in cells with a small Rm value. These
important consequences of τm and Rm for synaptic integration in nerve cells can be explored
using the Neuron tutorial.

Finally, it is worth recalling from Chapter 2 that the “membrane model” of Figs. 6.1A
and 6.1B serves as a basis for many models that are concerned with the electrical activity
of nerve cells. Any additional type of channels (e.g., voltage-gated channels) that may be
present in the modeled patch of membrane can be represented by an additional (voltage-
dependent) resistive branch and an associated battery, both in parallel to the circuit of
Fig. 6.1B. Furthermore, a distributed (non-isopotential) system, such as the dendritic tree
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or the axon can, in principle, be constructed from a set of such patches of isopotential
membrane compartments that are connected to each other through the cytoplasmic (axial)
resistance, as we have done in Chapter 5. This is indeed the common approach used to
model the spread of potentials along the detailed structure of dendritic and axonal trees
(Segev et al. 1989).

6.3 Response to Activation of Synaptic Channels

In the case of the classical fast synapse, the release of neurotransmitter from the presynaptic
terminal directly results in the opening of chemically gated ion channels at the postsynap-
tic membrane. Thus, the input induced by the synapse is primarily expressed as a local
conductance change at the membrane situated just opposite to the presynaptic release site.
Subsequently, specific ions can flow through these channels to produce the synaptic cur-
rent (Isyn) that gives rise to the postsynaptic potential. A concise review of other types of
synapses may be found in McCormick (1990).

It is important to note that although both the synaptic input and an electrode which in-
jects a current pulse (as in the case analyzed above) result in the flow of ions across the
membrane, the two types of inputs differ in a significant way. Although the electrode does
not change the properties of the membrane (provided that the membrane is not injured by
the electrode), the synaptic input, due to its inherent characteristics, changes the membrane
properties of the postsynaptic cell; it opens new channels there. In the case of an elec-
trode, the current is produced by an external source (the electrode), whereas in the case of
a synapse the current source is part of the neuronal system (the ion gradients across the
membrane and the transmembrane synaptic channels). As shown below, the difference be-
tween these two type of inputs is manifested in the behavior of the corresponding membrane
voltage.

6.3.1 The Postsynaptic Current

In Fig. 6.1B, the opening of synaptic channels in an isopotential patch of membrane is
modeled by a time-dependent conductance change (gsyn � t � ). This conductance lies in series
with a battery (Esyn, the synaptic reversal potential or the synaptic battery) that drives the
ions involved in the synaptic process. Note that here we assume that the synaptic channels
are time-dependent but voltage-independent. This is true for many types of synaptic chan-
nels but not for all (e.g., the NMDA receptor, which is modeled in Chapter 19). According
to Ohm’s current law, the synaptic current through the right-most branch in Fig. 6.1B is,

Isyn � t � � gsyn � t � � Vm � Esyn ��� (6.8)
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where gsyn is the synaptic conductance in siemens. Vm, the voltage across the membrane
and Esyn, the synaptic battery, are both measured relative to the resting potential (which was
set to zero in the present chapter).

When only the synapse is active (without an external current source) Vm is the postsy-
naptic potential that arises from the activation of the synaptic channels. As can be seen from
the circuit in Fig. 6.1B, an increase in gsyn causes Vm to move closer to Esyn. Therefore, the
direction of the change in Vm depends on the sign of the difference (Vm � Esyn). If Esyn is
more positive than Vm then an increase in gsyn causes Vm to be more positive — a depolar-
ization. If Vm � Esyn, the activation of the synapse hyperpolarizes the cell. Note also that
when Vm � Esyn, the activation of the synapse does not produce synaptic current (Eq. 6.8)
and thus the voltage across the membrane does not change when such a synapse is activated
(a silent synapse). However, the activation of such a synapse causes an increase in the input
conductance (a decrease in the input resistance) of the postsynaptic cell since it does open
new channels there. As a result, the voltage response of such a shunted cell to other inputs
(either from an electrode or from another synapse) will decrease relative to the case where
the silent synapse is not active. This inhibitory effect is further discussed below.

6.3.2 The Postsynaptic Potential

As in the case with a current that is injected into a cell through an electrode, the displace-
ment of the voltage at the post synaptic membrane that results from opening synaptic chan-
nels depends on the magnitude and shape of the synaptic current, as well as on the passive
electrical properties of the postsynaptic cell. Hence, the voltage (the PSP) that is developed
in the circuit of Fig. 6.1B due to the activation of the synaptic input depends both on the
characteristics of the synaptic branch (on gsyn and Esyn) as well as on the passive (grest and
Cm) elements. Again, when no external current is injected into the cell model of Fig. 6.1B,
the net current across the membrane is zero. This time it is the sum of the capacitive current
IC, the ionic current that flows through the resting channels Irest and the synaptic current
(Isyn),

IC � Irest � Isyn � 0 (6.9)

or:

Cm
dVm

dt � grestVm � gsyn � t � � Vm � Esyn � � 0 � (6.10)

The solution, Vm � t � , describes the buildup of voltage while the synaptic channels are opened
(i.e., when gsyn � 0). For the special case where the synaptic conductance change is a
rectangular pulse with an amplitude of gsyn and a duration of tsyn, the solution, obtained as
before by separating variables and integrating, can be written explicitly,
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Vm � t � � gsyn

gsyn � grest
Esyn � 1 � e � t � gsyn � grest � � Cm ��� for 0

�
t

�
tsyn � (6.11)

This equation connects the conductance change induced by the neurotransmitter (gsyn) and
the transient PSP induced at the postsynaptic membrane. The steady-state solution, ob-
tained when the synaptic channels are opened for an infinitely long duration (tsyn

� ∞)
is

Vm � gsyn

gsyn � grest
Esyn � 1

1 � grest � gsyn
Esyn � (6.12)

Equations 6.11 and 6.12 are strictly applicable only to step-conductance changes. Never-
theless, they provide several important general insights into the functional consequences
of synaptic mechanisms. One is that, unless Esyn � 0 (a silent synapse) the PSP is always
smaller (in absolute value) than Esyn (Eq. 6.12). Only when gsyn � grest (the total con-
ductance of the synaptic channels is much larger than that of the resting channels) does
Vm approach Esyn. Secondly, one can see that Vm is a nonlinear (sublinear) function of
gsyn. For example, Eq. 6.12 tells us that if gsyn � grest , then Vm � Esyn � 2. Assuming that
Esyn � 90 mV , the steady-state value of the PSP is 45 mV for this particular example. Mul-
tiplying gsyn by a factor of two (so that gsyn � 2grest ) produces a steady depolarization of
60 mV rather than 90 mV , as expected in a linear case. This nonlinearity implies also that
successive synaptic inputs (unlike current inputs) will not sum linearly with each other. We
examine this nonlinearity in more detail below.

The third point to note from Eq. 6.11 is that, as with a current step (Eq. 6.4), for the case
of a rectangular gsyn the PSP increases exponentially as long as the synaptic input is present.
However, these two cases are markedly different, because in the case of the synaptic input
the time constant depends on gsyn as well as on grest . The time constant Cm � � gsyn � grest � in
Eq. 6.11 is briefer than the resting time constant τm � Cm � grest . Hence, when the synaptic
channels are opened, Vm � t � builds up faster than in the resting conditions. The larger gsyn

is, the faster Vm � t � develops towards its maximal value.
At the end of the synaptic action (for t � tsyn ), when the synaptic channels are closed

again (gsyn � 0), the membrane conductance returns to its passive (resting) value. During
this time interval the synaptic potential decays towards the resting value with the passive
time constant τm, as in the case of the current input (Eq. 6.7). Thus, unlike the case of a
constant current input of Fig. 6.2, in the case of a synaptic input the PSP rises faster than it
decays.

What happens when several synapses, each with its own conductance change and bat-
tery, impinge on the same isopotential patch of postsynaptic membrane? The resulting
equation is similar to Eq. 6.10, with the additional synaptic currents added to the sum,
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Cm
dVm

dt � grestVm � g � 1 �syn � t � � Vm � E � 1 �syn � � g � 2 �syn � t � � Vm � E � 2 �syn � � � � � � 0 � (6.13)

Now, each synaptic input may have a different reversal potential (E � 1 �syn , E � 2 �syn , . . . ) and a

different corresponding conductance change (g � 1 �syn, g � 2 �syn, . . . ) which may be activated at
different times (∆t1, ∆t2, etc.), respectively. Depending on the sign of the difference, Vm �
Esyn, some synapses may contribute depolarizing currents, whereas others may contribute
hyperpolarizing currents. The PSP in this case is the (nonlinear) sum of the effects of all the
synaptic inputs. The general solution to Eq. 6.13 for the case where all gsyns are rectangular
is an extension of Eq. 6.11,

Vm � t � � g � 1 �synE � 1 �syn � g � 2 �synE � 2 �syn � � � �
gtotal

� 1 � e � gtotalt � Cm � � (6.14)

Here, gtotal is the sum of all the conductances at that patch of membrane, namely,

gtotal � grest � g � 1 �syn � g � 2 �syn � � � � � (6.15)

Note that when Esyn � 0 (i.e., a silent synapse) it contributes to the sum in the denominator
but not to the numerator. Thus, such a synapse acts to reduce Vm � t � and is, therefore, called
an inhibitory synapse (see Sec. 6.4).

6.3.3 Smooth Synaptic Conductance Change: The “Alpha Function”

The synaptic conductance change is better described by a smooth function rather than by a
rectangular pulse, as treated above. It is convenient to use an analytical expression to ap-
proximate the smooth shape of the experimentally observed synaptic conductance change.
A fairly good approximation may be obtained by an analytical function that was first used
for this purpose by Rall (1967) and later by Jack et al. (1975) and is referred to as an alpha
function,

gsyn � t � � gmax
t
tp

e � 1 � t � tp � � (6.16)

This function increases rapidly to a maximum of gmax at t � tp. Following its peak, gsyn � t �
decreases more slowly to zero, as was shown to be the case in the previous chapter. Note
that in Eq. 6.16, gsyn � t � is determined by two independent parameters gmax and tp. A “slow
synapse” (a synapse whose channels kinetics are slow) will be modeled by a relatively large
tp. A powerful synapse (a synapse that opens many channels and produces a significant
conductance change) will obtain a large gmax value.
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The GENESIS simulator uses a slightly more general form, the dual exponential func-
tion, to describe gsyn � t � ,

gsyn � t � � Agmax

τ1 � τ2
� e � t � τ1 � e � t � τ2 ��� for τ1 � τ2 � (6.17)

where A is a normalization constant chosen so that gsyn reaches a maximum value of gmax.
When τ1 � τ2 � tp, this is equivalent to the alpha function form of Eq. 6.16. When the
synaptic conductance change is modeled by either Eq. 6.16 or 6.17, there is no explicit
solution to Eq. 6.10 and the numerical techniques discussed in Chapters 2 and 20 must be
employed.

Figure 6.3 shows the response of the cell model in Fig. 6.1B to the activation of a train
of four identical excitatory synaptic inputs at 2 msec intervals. The conductance, shown in
the lower plot, is of the form given by Eq. 6.16. Here, the rise time of the synaptic con-
ductance is brief, tp � 0 � 2 msec, whereas the membrane time constant is relatively long,
τm � 5 msec. The resulting postsynaptic potential (upper plot) illustrates an important as-
pect of the temporal behavior that was discussed in the previous chapter (Sec. 5.4.3) and
which we will explore with the Neuron tutorial. As shown in the dashed curve, the much
longer membrane time constant causes the PSP due to a single synaptic input to persist
much longer than the conductance change. This results in a temporal summation of the
series of inputs to produce the larger PSP shown in the solid curve.

6.4 A Remark on Synaptic Excitation and Inhibition

As explained below, it is functionally reasonable to define a synapse as being excitatory or
inhibitory with respect to the value of the threshold for action potential firing Vth. Hence, a
synapse that increases the conductance and whose reversal potential is more positive than
Vth will tend to excite the cell (since it can, provided that gsyn is sufficiently large, produce
a PSP that is more depolarizing than Vth). Thus, the corresponding potential is called an
EPSP (excitatory postsynaptic potential). A synapse that produces a conductance increase
and whose reversal potential is more negative than Vth will tend to inhibit the cell from
firing. The corresponding potential is called an IPSP (inhibitory postsynaptic potential).

Using this operative definition, a synapse with Esyn
�

0 (the synaptic battery is more
negative than the resting potential) is, clearly, an inhibitory synapse. The activation of
such a synapse will both shunt and hyperpolarize the cell. As already discussed, a synapse
will only increase the conductance (without changing the voltage) when Esyn � 0. In both
cases the synapse acts to reduce the effect of the EPSPs produced by excitatory inputs that
impinge on the cell, thus making the firing of an action potential less likely.

Note that, according to the preceding definition, a synapse may be inhibitory but still
produce depolarization. This is true for the case when 0 � Esyn � Vth. However, note
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Figure 6.3 The response of the cell model in Fig. 6.1B to the activation of a train of four identical excitatory
synaptic inputs at 2 msec intervals. The conductance, shown in the lower plot, is in the form of an alpha
function. Each of these inputs has a peak value (gmax) of 1 nS and a time-to-peak (tp) of 0.2 msec; the associated
synaptic battery (Esyn) is 50 mV above the resting potential. The upper plot shows the potential change (the
PSP) for a single synaptic input (dashed curve) and for the series of four inputs (solid curve). As a result of
the larger membrane time constant (here, as in Fig. 6.2, τm � 5 msec), the PSP persists much longer than the
conductance change associated with the synaptic input. This allows a temporal summation of the inputs to
produce a larger PSP than would be produced by an individual input.

from Eq. 6.12 that the activation of such a synapse cannot, in principle, reach the threshold
for action potential firing. It can be shown that, in general, the facilitative effect of such
a subthreshold depolarization is less significant than the inhibitory effect (on excitatory
inputs) of the accompanied shunt induced by this synapse. Thus, it is still justified to call
such a synapse inhibitory; the corresponding potential is sometimes called a depolarizing
IPSP (Segev and Parnas 1983).

6.5 GENESIS Experiments with PSPs

We can study the effects of various synaptic inputs by using the GENESIS Neuron tutorial,
which was briefly discussed in Chapter 3. This tutorial lets us perform experiments on a
simple neuron model consisting of a soma and two dendrite compartments. The soma has
Hodgkin-Huxley voltage-activated channels like the ones we used in the Squid simulation,
and the dendrite compartments have both excitatory and inhibitory synaptically activated
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channels that respond to spikes applied at the synapses.
To start the tutorial, change to the Scripts/neuron directory and give the command

“ ���������	����
���
������ .” Once the graphs and “control panel” appear on the screen, click the
left mouse button on the box labeled �����	� and spend a few minutes exploring the topics
on the help menu, starting with ���	������������� . When you are ready to begin, set the soma
injection current to zero in the �����! #"$��% dialog box. (Don’t forget to hit “Return” after
changing the value in a dialog box.) As we will be providing synaptic input to dendrite com-
partment #1, it would be a good idea to examine the default values of the parameters used
for this compartment and the two channels that it contains. Click on &�����'	����(��*) under
the +	�������� ��� ��,�-(��-�,� heading. After reviewing the parameters used to model the com-
partment, click on ��.�/102+�340 at the top in order to bring up a secondary menu showing the
parameters for the excitatory channel. This should reveal that the ionic equilibrium poten-
tial has been set to � 10 mV . In this simulation, Erest has been set to � 70 mV rather than 0,
as we have done so far in this chapter. Thus, Esyn � � 10 mV corresponds to a value 60 mV
above the resting value of Vm. This potential is typical of that for a depolarizing channel
that allows both Na � and K � ions to pass. Although this channel is called the “Dendrite 1
Excitatory Channel”, the name is due to the default value used for Esyn. By setting this to a
value less than Erest we could turn it into a hyperpolarizing inhibitory channel.

The default value of gmax (given in mS) corresponds to a value of 0.1 nS, or 0 � 1 5 10 � 9

siemens. This value is typical for a single synaptic input. The channel model used in
GENESIS simulations is of the dual exponential form given in Eq. 6.17. As the two time
constants τ1 and τ2 are each 3 msec, this corresponds to an alpha function (Eq. 6.16) with
tp � 3 msec. For now, we will use the default values of these parameters, so click on &�6-
	�
to put this window away.

Clicking on "$�	3407+�340 in the &�����'	����(��8) parameter window brings up a similar win-
dow for the channel that is nominally the inhibitory channel. The equilibrium potential has
been set to � 80 mV , which is the value used for potassium ions in our model. The maximum
channel conductance and the time constants are the same as those used for the “excitatory”
channel. Click on &�6�
�� in both windows to put them away. The default parameters for the
&�����'��!��(��:9 compartment and its channels are the same as those for &�����'��!��(��8) .

6.5.1 Temporal Summation of Postsynaptic Potentials

We will start our investigation by applying a train of spike inputs to the excitatory channel
of &�����'	����(��#) . This should teach us several principles regarding the temporal summation
of EPSPs. A single synaptic input is rarely sufficient to produce a very large effect in most
neurons, so this simulation provides a simple way to scale the value of gmax without having
to call up the sequence of menus needed to change gmax. The dialog box labeled &�����':;�)
��.�/10=<�(>0 contains the value of a synaptic weight to be used to scale the synaptic conduc-
tance. Thus, entering “10” is equivalent to providing simultaneous input to 10 identical
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synapses, or to multiplying gmax for this channel by 10. The default value of 0 means that
the channel is receiving no input. The toggle to the right of the dialog box can be used to
switch the input between ����
���/-��� and �	��
��!/���� .

For our experiment, set the weight for the &�����'	����(��*) excitatory channel to 10 and
leave the input set to �	��
��!/���� . We will use the default timings for the spike trains that
come from �	��
��!/���� . Click on �����	� and observe the three plots on the left. The upper
plot shows (in red) that ����
��!/-��� is delivering a burst of spikes at 10 msec intervals. The
plot below it shows the resulting channel conductance. Note the difference in the rise and
fall times for the conductance. Can you explain these? The lower plot shows the rather
small increase in the PSP associated with each spike. The plot to the right of this shows
similar, but slightly attenuated, changes in the soma membrane potential.

Next, we would like to explore the effect of increasing the rate of input to this channel.
This can be done by clicking on the " ����
�(,� button in the control panel. The menu that
appears contains dialog boxes to set the delay before the onset of the burst of spikes, the
width (duration) of the burst, and the interval between spikes. Change the spike interval for
both ����
���/-��� and ����
��!/-��� to 2 msec. In order to easily compare the results with the
previous ones, click on the overlay toggle so that it reads 6��������	 �	 6-
 , and then click on
 ���-��� and ���	��� .

As with Fig. 6.3, note the temporal summation of the consecutive increases of conduc-
tance in the plot of the channel conductance. These result in a buildup of the EPSP, as
each increase is added to the previous one. Eventually, the potential becomes large enough
to trigger action potentials in the soma. After the train of input spikes ends, the PSP de-
cays to the point where no more action potentials are produced. If you look carefully, you
may notice that the action potentials are a little higher in the plot of the soma membrane
potential. This is because the PSP in the dendrite is propagated to the soma, where the
voltage-activated channels cause the action potentials, and these are propagated back to the
dendrite through the axial resistance. In the dendrite compartment, we are seeing a superpo-
sition of the PSP produced here and the action potential that is produced in the soma. If we
were to look in a more distant dendrite section, the peaks would be much more attenuated.

To examine the effect of adding IPSPs to EPSPs, all we need do is to set the weight for
the &�����'��!��(��8) inhibitory channel to 10, so that it will receive input from ����
��!/-��� . We
previously set the �	��
���/-��� spike interval to 2 msec, and the default delay is 10 msec after
the start of the spike train from ����
���/-��� . After setting the weight, set the overlay toggle
to 6��
� , click on


 �����
� to clear the graphs, and click on ���	��� to run the simulation. You
should see a result similar to that shown previously in Fig. 3.3. Shortly after the first action
potential, we get a large buildup of conductance for the potassium channel. This decreases
the net PSP in the soma to a value below that necessary for the production of further action
potentials.

In Chapter 5, we studied the passive propagation and attenuation of pulses through a
“cable” consisting of many compartments. Here, we can easily make a qualitative examina-
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tion of the effect of spatially separating synaptic inputs by performing one more experiment
on the model neuron. The simulation gives us the option of putting any number of passive
“cable” compartments between the two dendrite compartments by entering a non-zero inte-
ger in the +� ����	� +	������(,� 0 dialog box. Set this value to 10 and switch the excitatory input
to the &�����'��!��(�� 9 compartment using a weight of 100. Use the same input timing as in the
previous experiment and compare the results with weights of 0 and 10 for the &�����'	�!��(��#)
inhibitory channel. Note how a comparatively small inhibitory input is able to inhibit the
much larger excitatory input.

In order to see the channel conductances and the membrane potential in the &�����'	����(�� 9
compartment, click on the ������(#�����, toggle so that it reads ������( &�����'�9 . Now, the lower
right graph will plot the membrane potential for &�����'��!��(�� 9 instead of the soma. You
should see very large EPSPs in &�����'	����(�� 9 , with very attenuated soma action potentials
superimposed. From the analysis of Chapter 5, you learned how to calculate this attenu-
ation. Using the values of the parameters given for the dendrite compartments, can you
verify that the attenuation is that which would be expected?

6.5.2 Nonlinear Summation of Postsynaptic Potentials

We can learn more about the principles underlying temporal summation of PSPs if we can
find a way to eliminate the production of action potentials in the soma. This might be done
by blocking the voltage-activated sodium channels in the soma, or by separating a section of
dendrite from the soma. In our model, this could be accomplished by setting the maximum
conductance of the soma sodium channel to zero, or by greatly increasing (decoupling)
the axial resistance between the dendrite compartments and the soma. The latter method
has the additional advantage that it reduces the conductance loading of the soma, with its
smaller membrane resistance, so that we are left with an isolated section of dendrite and
consequently may observe larger PSPs.

We will perform the rest of our experiments on the &�����'��!��(�� 9 compartment, isolat-
ing it from the rest of the cell. Call up the +����	���� -�� ��!��(����,� window for &�����'	����(�� 9
and increase the specific axial resistance RA to 100 KΩ � cm. Note the effect on the value
displayed for


  �.��- �� (Ra, in KΩ). In order to analyze our results, we need to know the
value of grest for this compartment. In the notation of this simulation, the input resistance
(or membrane resistance) Rm in KΩ is


 �,��� and the specific membrane resistance RM in
KΩcm2 is


��
. You should verify that the values given in the dialog boxes for these two

parameters lead to the result that grest � 1 � 26 nS. After making this calculation, click on
&�6�
�� to put the menu away. Click on the ���	�-( �	���, toggle so that it reads ���	��( &�����'�9 ,
in order to plot the membrane potential for &�����'	�!��(��:9 in the lower right graph. Finally,
set the overlay toggle to 6��
� and click on


 ���-��� to clear the graphs.
Let us start by demonstrating one of the important characteristics of synaptic inputs that

was discussed above: the inherent nonlinearity in the generation and summation of PSPs.
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We would like to apply a single spike input to the excitatory channel of &�����'��!��(��:9 ,
using �	��
��!/���� . This may be accomplished by calling up the " ���	
�(,� menu and setting
the Source A spike interval to something large, say, 100 msec. Then set the &�����':;�9���.�/10
<�( 0 dialog box value to 1, and the weights for the other three synapses to 0. Click on �������
to run the simulation. When it has finished, toggle to 6��������� 	 6�
 , click on


 ���-��� , and
run the simulation again with a weight of 2. Note that this is equivalent to simultaneously
activating 2 synapses, each having gmax � 0 � 1 nS or to activating a single synapse with
gmax � 0 � 2 nS. Repeat this experiment with weights of 10, 20, 100 and 200 and then estimate
the peak values of the PSPs relative to the resting potential. In order to measure the heights
of small PSPs, you can click on the �	/� ��	� button in the upper left corner of the graph.
This will bring up a window with dialog boxes that can be used to set 	�� �$� and 	��! 	. to
appropriate values.

From these experiments, you should conclude that the simultaneous inputs sum linearly
for small values of gmax, but that the summation becomes increasingly nonlinear as gmax

increases. We can understand this behavior from Eq. 6.11 and the discussion that follows it.
If we approximate the alpha function conductance with a rectangular pulse having ampli-
tude gsyn � gmax and duration tp, Eq. 6.11 tells us that the PSP will be roughly proportional
to gsyn when gsyn � grest . When gsyn � grest , the amplitude of the PSP approaches Esyn and
is independent of gsyn. This analysis is not exact, because we have neglected the details of
the time dependence of the synaptic conductance. Nevertheless, you should be able to see
rough agreement with the measurements that you have performed.

The effect of a “silent inhibition” on the EPSP may be examined using a similar proce-
dure. Use Source B as an input to the &�����'��!��(��:9 inhibitory synapse, setting the timing
parameters for ����
���/-��� to be the same as those for �	��
���/-��� . Set Esyn for this channel
to be equal to Erest , � 70 mV , and experiment with different magnitudes of the synaptic
weights in order to make the effective value of gsyn much smaller or much larger than grest .
What does Eq. 6.14 tell you about the circumstances in which the silent inhibition will have
an effect upon the EPSP?

The exercises and projects listed at the end of this chapter suggest several other prop-
erties of summed synaptic inputs that you may explore with this simulation. You may also
wish to design your own computer experiments in order to gain further insights into the
local integration of synaptic inputs.

6.6 Concluding Remarks

We hope that you enjoyed the experiments with postsynaptic potentials and that they have
helped to clarify some basic questions regarding synaptic summation and integration. One
point to remember is that when membrane channels are the source for the production of
voltage changes across the membrane, the reversal potential associated with these channels
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is the maximal value that can be achieved using this mechanism. Hence, unless active
electrogenic pumps are involved or current is injected from an external source (e.g., by
an electrode), the membrane potential of the nerve cell can only vary among the ionic
batteries involved (determined by the concentration gradients of the permeable ions across
the membrane). In nerve cells the value of the ionic batteries is in the range of � 30 mV up
to 150 mV or so relative to the resting potential.

Secondly, synaptic inputs are inherently nonlinear inputs since the input itself (the con-
ductance change) perturbs the system (the neuron’s membrane). The nonlinearity is more
apparent when the conductance change is significant (relative to the resting conductance).
The nonlinearity is also marked when the membrane potential Vm is close to the reversal
potential of the synaptic process (as is commonly the case with inhibitory synaptic inputs).

Finally, the fact that the neuron with its synaptic inputs is a nonlinear system has several
important consequences for the information processing function of the cell. It can be shown
that a rich repertoire of operations which could not be implemented in a linear system can
be implemented in nonlinear systems such as real nerve cells. You may read more about this
important issue in papers by Fatt and Katz (1953), Koch and Poggio (1987), Mel (1993),
Rall (1964, 1967), Segev and Parnas (1983), and Segev (1992).

6.7 Exercises and Projects

Unless otherwise noted, perform these experiments on the Dendrite 2 compartment, using
a large value of the axial resistance in order to isolate the compartment from the rest of the
cell.

1. Find out how changes in the specific membrane resistance RM in the Dendrite 1 com-
partment affect the amplitude and area of the EPSP. Check this once with the default
value of tp (3 msec) and then construct a faster synaptic input, say, tp � 0 � 3 msec.
Which one is more sensitive to changes in RM? Explain your results.

2. For gsyn � grest , is the size of the PSP simply related to the size of the postsynaptic
compartment? Is the value of tp relevant in this case? Perform some experiments to
investigate these effects and explain your results. Why is the dependence on tp much
less than in the case of the previous exercise? Suppose that gsyn is expressed in terms
of a channel conductance density with units of mS � cm2, so that gsyn scales with the
area of the compartment. Would you then expect to see any dependence of the PSP
on the size of the compartment?

3. Investigate the conditions under which a depolarizing IPSP can either facilitate or
inhibit a simultaneous EPSP. To do this, set Esyn for the isolated “ &�����'	�!��(��:9 in-
hibitory channel” to � 65 mV , so that it is 5 mV above the resting potential. Use the
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default values for the other channel parameters. Set the input timings for �	��
��!/����
and �	��
���/-��� so that they will each produce a single spike input at the same time.
Experiment with both large and small magnitudes of the synaptic weights for the two
channels in order to find out which values of gsyn will increase or decrease the PSP
relative to the case when the inhibitory conductance is zero. Explain your results in
terms of the equations given in this chapter.

4. How does the duration of the conductance change (the time-to-peak tp) affect the
amplitude of the PSP? Construct a plot of Vpeak (measured relative to Erest ) vs. tp and
explain why your results are what one would expect.

5. Connectionist artificial neural networks often use a sigmoidal (S-shaped) curve to
represent the input-output relation of an artificial “neuron.” The input is an analog
value representing the average rate of spikes that would be input to the neuron and
the output represents the average firing rate of the neuron. Perform some experiments
on this model neuron with the value of RA and all other parameters restored to their
default values. See if a plot of the firing frequency vs. input spike rate has roughly
this shape (being zero for small inputs and saturating at a constant value for large
inputs). Provide excitatory input to &�����'��!��(��*) with a synaptic weight of 12 and
vary the spike interval for ����
��!/-��� .


