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Abstract:
Results of spike sorting algorithms are usually compared against recorded signals
which themselves underly interpretations, distortions and errors. Our approach is to
provide and compare physiological extracellular potential data by a realistic cortical
network simulation. For this purpose, we utilize the neural simulator GENESIS and
simulate a region of cortex containing 90 cells. We are able to "record" simulated
extracellular potentials from "virtual electrodes" and produce test data closely
resembling multisite neuronal recordings. Our realisitic, artificial data is complex and
almost natural in appearance, however  current spike detection schemes appear unable
to reliably detect all spikes produced.
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Introduction
Progress in microtechnology development by the European VSAMUEL consortium [5]
following the track started earlier at the University of Michigan [2], recently achieved
multisite recording probes with 32 electrode sites on multiple purpose silicon probes.
This opens the door to acquire neuronal signals which may contain spike trains from
hundreds of cells [16]. Obviously, the amount of data acquired in a single experiment
requires some type of automation to assign spikes to individual cells. This spike
sorting is currently done by several more or less standard methods. However a rigid
assessment of their quality is needed.
Up til now, results of spike sorting algorithms are compared against recorded signals
which themselves underly interpretations, distortions, and errors. An alternative is, to
run tests on artificial data generated by adding spikes snippets to noisy signals [3]. This
method has the advantage of control over data, but is paid for with unphysiological
data. Our approach is to mimic physiological extracellular potential data in a
biologically realistic network simulation. For this purpose, we utilize the freely
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available neural simulator GENESIS [1] to simulate a small network of 90 cortical cells
and use their output for assessment within two automated spike detection algorithms
[10, 17].

Methods
A region of cortex becomes represented by 72 CA3 pyramidal cells, randomly spaced at
35 up to 45 microns in each direction, and 18 interspersed inhibitory interneurons. The
interneurons are divided into 9 feedforward and 9 feedback interneurons. The only
difference between the two inhibitory cell types is their pattern of connectivity.
Neurons of one group are 75 up to 85 microns in x-direction and 155 up to 165 microns
in y-direction apart from each other, thus alternating in y-direction. Additionally,
there is a random rotation of each cell about its z-axis (see Figure 2 insert). In the case
of the pyramidal cells, we employed the Traub model [14] as implemented by Pulin
Sampat (Brandeis University) and Patricio Huerta (MIT). This model comprises 66
compartments, thereof one axon initial segment and one axonal compartment. Six
different channel types are simulated, namely active Na+, active Ca2+, delayed rectifier,
transient, slow AHP and rapid Ca2+ - and voltage dependent K- channels. We
implemented Traub's cortical interneuron model [15] in GENESIS-code by ourselves
and incorporated 48 compartments, again including one axon initial segment and one
axonal compartment. Channel types, their kinetics and random variation of the
resting membrane potential between -65 and -60 mV are the same as in the case of the
pyramidal cells. The models for pyramidal cells and interneurons mainly differ in the
cell geometry and their channel conductances [15]. Our GENESIS implementation of
the two models allows almost exact replication of some results presented in the
literature [14, 15].
The ratio of 1:4 between interneurons and pyramidal cells is orientated to the literature
[13], where the ratio is approximately 1:5. We realized the synaptic interactions by
spreading the following receptors already implemented in GENESIS: AMPA [4],
NMDA [4], GABAA [8] and GABAB [12] receptors on the pyramidal cells and AMPA
receptors only on the interneurons. The distribution of these receptors allowed the
pattern of connectivity shown in Figure 1.

Figure 1: Sketch of our cortical circuit: Pyramidal cells (PYR) receive random afferent input at the perisomatic region,
feedforward interneurons (FF) at their apical dendrites. Feedforward interneurons contact the pyramidal cells at the
distal apical and basal dendrites. Excitatory contacts (dashed lines with open triangles) from other pyramidal cells are
also made in these regions. Soma and proximal dendrites are the targets for the inhibitory input (dark triangles) from
feedback interneurons (FB).

Pyramidal cells (PYR) receive random afferent input at the perisomatic region,
feedforward interneurons at their apical dendrites. Feedforward interneurons (FF)
contact the pyramidal cells at the distal apical and basal dendrites. Excitatory contacts
(open triangles) from other pyramidal cells are also made in these regions. Soma and
proximal dendrites are the targets for the inhibitory input (dark triangles) from
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feedback interneurons (FB). Cell connections are sparse, but each neuron in the
network can contact all other neurons. Pyramidal cell axons are myelinated, thus
getting an assigned conduction velocity of 0.5 m/s. We assigned to unmyelinated
interneuron axons and mossy fibers a conduction velocity of 0.2 m/s. Mossy fiber input
or afferent input, respectively, is simulated by GENESIS objects randomly generating
spikes at a predefined rate. For our simulation, a rate of 40 spikes/s worked out fine.
Higher rates led to an excessively high excitation of the network, expressed by
continuous oscillations. To prevent this undesired state, we also had to reduce the
number of pyramidal cell - pyramidal cell connections and to increase number and
weight of inhibitory connections.

Within the framework of this network simulation, extracellular field potential data
can now be generated by simulating multi-site electrodes with the help of linearly
arranged GENESIS "efield" objects at arbitrary positions in the network. The "efield"
object is the implementation of the following equation (1) by Nunez [9].

(1) F=

The transmembrane currents Ii of n compartments are added with respect to their
distance Ri from the "electrode". The scale factor s denotes conductivity. Homogeneous
resistivity and no capacitance is assumed for the intercellular medium. A Virtual
Reality view of 32 such electrodes, arranged linearly on 4 needle-like virtual carriers
(so called probes) is shown in Figure 2.
The simulation is numerically solved with the Exponential Euler integration method
and a step size of 2.5 msec .

 
Figure 2: VR-view depicting the arrangement of GENESIS efield objects, simulating 4 probe shafts with 8 recording sites
each, surrounded by 4 pyramidal cells as part of the geometrical arrangement of the whole cell array.
The figures' insert illustrates a VR-view of our array of 72 pyramidal cells. A random rotation of each cell about its z-
axis is not visible in this illustration.

Results and Discussions

Whereas our small cortical model awaits its physiological validation by real brain
recordings, the simulated extracellular, multiunit signals resemble closely
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experimental multisite recordings taken with silicon probes by [16]. Specifically, a bell-
shaped distribution in potential amplitude along a linear site array (Figure 3) can be
found corresponding to real recordings as well. The middle electrode (i.e. GENESIS
efield-object No 4 of each array, see Figure 2) is located close to simulated cells' soma
level and therefore shows the highest amplitude recorded at one time.

Figure 3: Exemplary recording from 7 linearly arranged virtual electrodes of one probe (spacing 30µm). The horizontal
scale bar represents 0,1s. Note: The maximum amplitude is recorded at roughly the z-coordinate of the closest cells' soma
and decays up and down the linear probe array.

In general, the soma is primarily assumed to be the origin of spike activity [6], but is by
far the largest compartment as well, both factors may contribute to the high amplitude
on the middle trace. Nevertheless, due to an increasing distance to all big, spiking
compartments further up and down the linear array, amplitudes recorded there
decrease with increasing distance.
However, one discrepancy to the real recordings can be seen in the almost equal
amplitude height for all "visible" cells recorded. This discrepancy is most likely due to
the fact, that the GENESIS efield object doesn't provide a direction sensitive parameter,
but instead sums over all compartments of the whole surroundings. This is not found
with real silicon multisite probes, having their recording sites shielded to the backside
by a silicon substrate and thus providing higher sensitivity to one side with yet
unknown directional characteristics. Consequently, a comparison of recorded to
simulated multisite data may in the future shed light on the question of directional
characteristics and performance of different recording sites and carriers without the
need to sacrifice more than one animal.
A more detailed example of one such multiunit recording trace is shown in Figure 4 in
addition to the four closest pyramidal cells and the closest feedback interneuron with
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its spike train, as indicated by the simulations' output. The combination of displays
demonstrates one of our models drawbacks: a strong tendency for the pyramidal cells
to fire in groups, yet another reason for ongoing research and an additional obstacle for
all automated spike detection schemes. This synchronous firing is obviously not
clearly detectable in the multiunit activity, but very clear on spike raster plots. The
only multiunit evidence for the synchronous activity can be found in a general rise in
background activity, lifting the overall multiunit potential, but seems with all its
details not easily back projected to its originating spike trains.

Figure 4: A recording trace of one site is displayed simultaneously with the spikes of surrounding cells as indicated by the
simulator: On top, one FB interneuron (FB4), followed by four different pyramidal cells (PYR 39, 38, 33, 32).

Figure 4 therefore clarifies the difficulties faced by whatever type of spike detection.
Even though the simulations' output gave precise timing and distribution of spike
trains per neuron, those spikes are by far not easily detected in the multiunit activity
recorded. But this difficulty is even dwarfed by the necessary second stage to be
achieved by each type of automated analysis: the assignment of detected spikes to
unique sources, thus producing cellular spike trains much like the one our simulation
gives naturally.
In order to assess the first stage of the mentioned backward problem (going from
potential data to spikes) in a practical way, we had two different spike detection
algorithms competing against each other on the same data set (Figure 3). The one is
taken from the freelay available software "Spiker" [10] and the other is our own
algorithm, based on morphological filters [17].
Figure 5 displays exemplary spike trains found by Spiker (a) or our detection scheme (b)
in relation to the spike trains given by the simulation (c - g). In order to mark hits by
either of the algorithms, we marked the appropriate spike either on top ("Spiker hit")
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or on the bottom ("Morph hit"). This way, the better performance of our detection
scheme is clearly visible.

Figure 5: Spike trains as detected by "Spiker" (a) and our morphological filter tool (b).
The following trains represent the "real" simulated spikes and indicate the hits by each detection method: Upper black
marks indicate a hit by Spiker, lower black marks indicate a hit by our morphological tool. Data from top: FB4 ( c), PYR 39
(d), 38 (e), 33 (f), 32 (g).

Overall results are encouraging, since Spiker recognizes approximately 66%±5% of all
spikes, whereas our morphological approach even reaches 80%±4%. The better result
in the latter case may be explained by the optimization to a dense linear recording
array, whereas Spiker is optimized to a tetrode arrangement, the cross-like
arrangement of sites. No attempts to quantify higher order errors were undertaken at
this stage, but are planned for the future.

To summarize above results, we are able to simulate realistically a small network of
cortical cells, thus providing simulated multisite potential data and the means to
precisely quantify the performance of spike detection schemes. Future work with this
simulation will show whether or not there is a Gold Standard algorithm for
automated spike detection and sorting. Incorporating this network model in a finite
element [11] description of a brain region [7] may even enable us to finally understand
in detail, why real multisite signals look the way they do.
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