Chapter 15
Adding Dendrites and Synapses

DAVID BEEMAN

In the previous chapter’s tutorial, we created a single soma compartment with Hodgkin-
Huxley sodium and potassium channels. Your script for this simulation should look some-
thing like the one given in the listing of tutorial3.g in Appendix B. In this simulation, we
will build upon this script in order to construct a multi-compartmental neuron with a den-
drite compartment containing a synaptically activated channel, an active soma, and an axon.

15.1 Adding a Dendrite Compartment

We will start by making a single dendrite compartment that we will connect to the soma.
For a more detailed model of a single neuron, we might have many such compartments
linked together, possibly with much branching. In this case, it would be advisable to use
one of GENESIS’ implicit numerical integration methods that are described in Chapter 20,
in order to avoid the need for very small time steps. However, for our two-compartment
model, and for models containing only a few compartments, the default method used by
GENESIS will provide sufficient numerical accuracy with a moderate integration step size.

An appropriate size for the compartment would be 100 um long and 2 pm in diameter, so
we add the following definitions to our script after the definitions of the soma dimensions:

float dend_1
float dend_d

100e-6 // add a 100 micron long dendrite
2e-6 // give it a 2 micron diameter

243

244 Chapter 15. Adding Dendrites and Synapses

You may wish to verify that these dimensions are consistent with the criterion that the com-
partment length should be small compared to the electrotonic length of the compartment
(Segev, Fleshman and Burke 1989). We can make the dendrite compartment with the same
makecompartment function that was used to create the soma, giving it the name /cell/dend
and using the dendrite dimensions instead of the soma dimensions. As the dendrite compart-
ment will not have Hodgkin-Huxley channels, the field Em should be set to EREST _ACT,
rather than Eleak. Our cell is now becoming complex enough to merit a makeneuron func-
tion of its own. The main script should create the cell with the function call

makeneuron /cell {soma_1} {soma_d} {dend_1} {dend_d}

and the statements that make the dendrite compartment and the soma with its channels
should go into the definition of this function. As it will make use of the makecompartment
function, its definition will have to come after that of makecompartment.

As we will generally stimulate the neuron with input to the dendrite rather than with
current injection, let’s now set the soma injection field value to zero instead of using the
previous value of 0.3 x 10~2 amperes. This should be done in the main body of the script,
after the call to makeneuron. For consistency, the initial value of the dialog box in the
function make_control should also be set to zero.

Now we need to link the dendrite to the soma. In Fig. 2.2, the dendrite compartment
would correspond to the “primed” compartment shown at the left. The dendrite compart-
ment needs to send both its axial resistance and its membrane potential at the previous
simulation step to the soma compartment. This allows the soma to calculate the current
entering from the dendrite compartment. This is done in the first message below, where the
dendrite compartment is linked to the soma with a message of the type RAXIAL. This mes-
sage has two value fields, Ra and previous_state. The previous_state field gives the value of
the membrane potential Vm at the previous integration step. We use this field rather than
Vm because GENESIS updates the fields of all the compartments in parallel, and we want
each compartment to update its data fields using data from the previous simulation step.

As the dendrite knows its own axial resistance to the soma, it only needs to receive
the soma’s previous membrane potential in order to update its state. This is accomplished
with the second message, which is named AXIAL. If we were to use the variable path as
the name of the parameter that will be replaced by /cell when makeneuron is invoked, the
statements that set up the messages would be

addmsg {path}/dend {path}/soma RAXIAL Ra previous_state
addmsg {path}/soma {path}/dend AXIAL previous_state

Now we need to add a synaptically activated channel to the dendrite compartment. The
GENESIS object most suitable for this is the synchan object. This object was used to create

15.1. Adding a Dendrite Compartment 245

the synaptically activated channels in the Neuron tutorial, which we used in Chapter 6.
Some older simulation scripts make use of a similar GENESIS object, the channelC2,
which is used with the obsolete axon object.

The synchan may receive delta-function “spike events,” each lasting for a single inte-
gration time step, from a SPIKE message. It then calculates a net channel conductance Gk
summing the effects of each spike. The parameter fields gmax, taul and tau2 are used to
determine the time behavior of the conductance. When the taul and tau? fields are equal, a
single spike impulse gives a conductance with the time dependence

t
Gk = gmaxmexp(l -—rl
This causes Gk to reach a maximum value of gmax after a time taul. The initial rise in
conductance is linear and the decay is exponential, with time constant taul. This is the
“alpha function” form, corresponding to Eq. 6.16.

When the two time constants differ, the conductance assumes a dual exponential form,

). (15.1)

_ Agmax
=t —ta2 P) ~ P) (15.2)

where A is a normalization constant chosen so that Gk assumes a maximum value of gmax.
These fields correspond to the variables that appear in Eq. 6.17. As with voltage-activated
channels, there is a field Ek for the equilibrium potential of the channel. You may find
further information about this object with the GENESIS command “help synchan”. The
mathematics behind the implementation of the synchan object are described by Wilson and
Bower (1989).

It may be useful to add other channels later, so it would be a good idea to write a fairly
general function that lets us specify arguments for the path to the compartment, the name
of the channel, and the values of the four parameters Ek, taul, tau2, and gmax. You might
start the declaration with:

Gk

function makechannel (compartment,channel,Ek,taul,tau2,gmax)

The body of the function should be written so that the statement
makechannel /cell/dend Ex_channel {Ek} {taul} {tau2} {gmax}

will create a channel named /cell/dend/Ex_channel and will set the fields to the stated values.

The function also needs to link the channel to its parent compartment. As usual, this
is done by passing messages. The compartment needs to know the conductance of the
channel and the equilibrium potential of the channel (the voltage of the “battery” in series
with the conductance). This is used by the compartment in its calculation of the net current
flow into the compartment. Although the channel conductance is not dependent on the

246 Chapter 15. Adding Dendrites and Synapses

membrane potential, the synchan object also calculates the channel current, so it needs to
receive a message from the compartment that gives the membrane potential. The required
messages may be set up with the statements, similar to the ones used with the Hodgkin-
Huxley channels in the soma,

addmsg {compartment}/{channel} {compartment} CHANNEL Gk Ek
addmsg {compartment} {compartment}/{channel} VOLTAGE Vm

Use this function within makeneuron to create an excitatory channel having a sodium equi-
librium constant, both time constants equal to 0.003 second, and a gmax of 5 x 10710
siemens.

In order to do anything interesting with our neuron, we will need to give it some synap-
tic input to the dendrite excitatory channel. However, before continuing, it would be a good
idea to test what we have so far. Try running the script as it exists at this stage, and use the di-
alog box to give the soma an injection current. Does it still work as before? Although there
is no dialog box for injection current to the dendrite, you can give it some injection by typ-
ing the command “setfield /cell/dend inject 0.3e-9” to the GENESIS prompt.
With no injection to the soma, does injection to the dendrite still produce action potentials
in the soma? Can you detect any difference in the results when injecting the dendrite rather
than the soma?

15.2 Providing Synaptic Input

The GENESIS Reference Manual describes various methods of activating a synchan ele-
ment. The most common method is to convert the action potentials produced in another neu-
ron to a sequence of unit amplitude spikes that are sent to the synchan with a SPIKE mes-
sage. As we don’t have another neuron to provide synaptic input to /cell/dend/Ex_channel,
it would be nice to have a function that would provide a randomly distributed train of spikes
to a given channel. This might represent the random spontaneous “background level” firing
of many other neurons that have inputs to our cell. Let’s call the function makeinput(path),
so that “makeinput /cell/dend/Ex_channel” will provide the necessary input. GEN-
ESIS has a number of objects that can be used to generate trains of pulses. We will use
the randomspike object to create an element that produces random spikes. Let’s call this
element /randomspike, also.

The randomspike object has the settable parameter fields, rate, min_amp, max_amp,
reset, and reset_value. The first of these gives the average number of randomly generated
spike events per unit time. When an event has been generated, the amplitude of the event
is a random variable uniformly distributed between min_amp and max_amp. There is also
a field named state which is updated at every simulation step. The state field has the value
of the event amplitude if an event has been generated. If an event is not generated, then

15.2. Providing Synaptic Input 247

the value of the state field depends on the reset field. If reset is non-zero, then state takes
on the value given in reset_value. Otherwise state will behave like a latch containing the
amplitude of the previous event.

An average of twenty spikes per 0.1 second run of the simulation would be a good
spiking rate to use in order to represent the input from several other neurons. We would like
them all to be of unit amplitude, and to last for just a single time step. After /randomspike
is created, this can be accomplished with the statement

setfield ~ min_amp 1.0 max_amp 1.0 rate 200 reset 1 reset_value O
We can then send the spike train to the channel with
addmsg /randomspike /cell/dend/Ex_channel SPIKE

Note that the SPIKE message uses no parameters. Whenever a spike event is produced,
/randomspike notifies the channel of the event. The synchan regards this as a spike of unit
amplitude, without making use of the state field of the randomspike object.

A typical axonal connection from another neuron involves a propagation delay. This
can be calculated from the axonal propagation velocity (on the order of 1 meter per second)
and the length of the axon. Typical values of this delay are in the range of 1 to 10 msec.
In addition, there can be a time lag of slightly less than 1 msec between the arrival of
a presynaptic event and the postsynaptic response. Also, we may need to scale a large
network down to a smaller model. This means that a single synaptic connection in our
model might represent several similar inputs in the biological system. Therefore, we would
like a way to scale the effect of a single synaptic connection by a “weight” factor as we did
in the Neuron tutorial experiments described in Sec. 6.5.1.

Each synaptic connection that is established by the addition of a SPIKE message con-
tains a field for the total delay and for the synaptic weight. In this particular case, we don’t
care about the delay, and the spike rate is fast enough to provide a reasonable amount of
input for a single synapse. The synaptic connections are numbered starting with zero, so
we would set these fields with the statement

setfield /cell/dend/Ex_channel synapse[0].delay O synapse[0].weight 1

It would be useful to plot the output of /randomspike on the same graph as we use for the
soma Vm. This could be done by sending a “PLOT state” message to the graph. However,
we have a problem with the very different magnitudes of Vm and the state of randomspike.
Fortunately, the xgraph object can receive a message called PLOTSCALE which allows
one to specify a scale factor and offset for the field to be plotted, in addition to the label and
color. The syntax for this message is

248 Chapter 15. Adding Dendrites and Synapses

addmsg source_element dest_graph \
PLOTSCALE field *label *color scale offset

Use this message to plot the spikes, giving them a height of 0.01. After having made these
additions to your script, try it out. Are the results reasonable?

A plot of the conductance of /cell/dend/Ex_channel can help our understanding of the
conditions under which action potentials are generated in the soma. There should be room
for such a graph to the right of the graph /data/voltage. Use your understanding of the
function make_Vmgraph to make an analogous function to create a graph channel_Gk within
the form /condgraphs. Set the vertical scale (ymax) to 10gmax. Notice the effect of each
spike on the channel conductance, and the relationship of the conductance to the production
of action potentials.

You should be aware of the fact that we have done some things the hard way in this sec-
tion in order to illustrate some GENESIS features. For example, the use of the PLOTSCALE
message to the graph was not strictly necessary. As the synchan object uses a SPIKE mes-
sage only to detect the existence of a spike event, we are free to set the min_amp and
max_amp fields of /randomspike to values that are convenient for plotting. If we had been
interested only in randomly activating the channel, we could have done it much more easily
by setting the synchan frequency field to the desired frequency of random activation. You
may wish to try deleting the SPIKE message (or deleting /randomspike) and setting the
frequency field to 200.

15.3 Connections Between Neurons

Normally, our cell would have a synaptic connection to another neuron, as in the MultiCell
demonstration. In order to see how this would be done, we can provide a positive feedback
connection from our cell to itself.

If we were interested in the details of the propagation of action potentials along an axon,
we might wish to build a multi-compartmental model of an axon connected to the soma. For
most purposes, we can use a much simpler model of an axon, regarding it as a simple delay
line for the propagation of spikes. As we have described, the axonal propagation delay is
combined with the synaptic latency and is implemented within the synchan object.

Typically, a presynaptic terminal releases a quantity of neurotransmitter near the peak
of an action potential. This means that we can achieve some computational efficiency by
converting each action potential to a single spike before it is sent to the synchan, instead of
explicitly calculating the postsynaptic response to the time-varying presynaptic membrane
potential. (When it is necessary to model the postsynaptic response to a graded non-spiking
potential, an ACTIVATION message may be sent to the synchan.) We can accomplish
this conversion by linking the soma to a spikegen object with an INPUT message. The

15.3. Connections Between Neurons 249

command “help spikegen | more” reveals that this object sets its state field to a value
output_amp for a single time step. This occurs whenever it receives an input greater than
the value of the field thresh and there has not been a spike for at least the interval specified
by abs_refract. As the action potentials are quite steep near Vm = 0, this would be a good
value to use for the thresh field of the spike element.

During an action potential, Vm will generally be above the threshold for longer than a
single time step. As we want each action potential to generate a single spike, we also need to
set the abs_refract field to a value corresponding to the minimum expected interval between
action potentials. A typical refractory period would be on the order of 0.01 seconds. As
with the /randomspike element, we would like the spikes to be of unit amplitude. The
necessary statements would be of the form

create spikegen /cell/soma/spike
setfield /cell/soma/spike thresh 0 abs_refract 0.010 output_amp 1
addmsg /cell/soma /cell/soma/spike INPUT Vm

At this point, you should add similar statements to makeneuron that will add a spikegen
element to the soma, with the name of the cell being specified by the path argument.

Once the cell has been created, we can use a SPIKE message to establish a synaptic
connection from /cell/soma/spike to /cell/dend/Ex_channel, just as for the connection from
/randomspike. As a single synaptic input to a dendrite is generally not sufficient to excite a
neuron, we will weight the input by a factor of 10, as if the cell were receiving inputs from
ten identical synapses. We will also give the input a propagation delay of 5 msec. Try this
out, adding the necessary statements to your simulation script. Remember that this second
connection will be numbered as synapse[1].

As a final embellishment to our simulation, we can add a “button” to the conductance
graph form that toggles this feedback connection on and off. The xtoggle widget was
mentioned in Chapter 14 as a possible way to toggle the overlay flag field of an xgraph
object. This object is similar to the xbutton object, with many of the same fields and
options. In addition, the field state, which may be accessed with the GENESIS getfield
function, toggles back and forth between 0 and 1 when the toggle button is clicked with the
left mouse button. It also has the fields offlabel and onlabel. These may be set to the two
strings that will be displayed when the toggle state is 0 or 1. As usual, the -script option
can be used to specify the name of a function to be invoked when the toggle is clicked.
Typically, this function will inspect the state of the toggle and use an if-else construct to
perform the appropriate operation. In our case, the function might look like this:

function toggle_feedback
int msgnum
if ({getfield /control/feedback state} == 0)

250 Chapter 15. Adding Dendrites and Synapses

deletemsg /cell/soma/spike 0 -out
echo "Feedback connection deleted"

else
addmsg /cell/soma/spike /cell/dend/Ex_channel SPIKE
msgnum = {getfield /cell/dend/Ex_channel nsynapses} - 1
setfield /cell/dend/Ex_channel \

synapse [{msgnum}] .weight 10 synapse[{msgnum}].delay 0.005

echo "Feedback connection added"

end

end

In this function, we have made use of the nsynapses field of the synchan object. As it
is often easy to lose track of the number of the most recently created connection, we can
use nsynapses to find the number of SPIKE messages that exist. It is then decremented by
one to take into account the fact that the first synapse is number 0.

Create an xtoggle element with appropriate labels in the /control form and use this func-
tion to allow it to toggle the feedback connection on and off. If you have done everything
correctly, your simulation results should resemble those in Fig. 15.1, when the feedback
connection is “off.”

Sinple Heuron Hodel

{Sienen} Channel Conductance
5e-09] Gk
4,5e-09

Henbrane Potential

4e-09j
3.5e-09
3e-09 7
2.5e-09

0,04

o j“ LIl ||1|J\ 0 T

2e-09

1.5e-09 7 i j\\
= I'\ | SRR TS
1e-09 !
l J /
4 IJY

5e-10 / ' '\{\.'f

[R L L O L A i o |
! 0,06 0,08 0.1 0,12
sec

=0,04

=0,067 l/_’/\

=0,08

=0.17
-0,12

e e e e P e e e P |
0,02 0,04 0,06 0,08 0,1 0,12
Sec

Figure15.1 Typica resultsfor the simulation when the dendrite excitatory channel is stimul ated with random
spike events. The feedback connection from the axon has been toggled “off.”

15.4. Learning and Synaptic Plasticity 251

15.4 Learning and Synaptic Plasticity

To implement learning or other forms of adaptive behavior in a GENESIS simulation, we
need some way to modify the synaptic weight, or to otherwise change the effect of providing
synaptic input. The following sections describe some of the ways that this can be done.

15.4.1 Continous Modification of the Synaptic Weight

When implementing learning algorithms, you will likely want to modify specific connection
weights, as with:

setfield /cell/dend/Ex_channel synapse[0].weight {new_weight}

However, you will want to make these changes continously, with changing values of the
variable new_weight, while the simulation is being stepped.

This could be done with a function written in the GENESIS script langauge. There is
a GENESIS object called script_out that could be used to invoke this function at specified
intervals during the simulation. Alternatively, you could use a synchan as the basis for
an extended object that performs some weight-changing algorithm as part of its PROCESS
action.

15.4.2 Use of the MOD Message

The synchan is able to receive a MOD message, which is intended for implementing neuro-
modulation, but could also be used to cause learned time-dependent modification of synap-
tic activation. This message simply scales the channel activation for the current time step by
a factor that is sent with the MOD message. Note that this globally affects all the synapses
in the synchan. If you want some synapses to be modifiable, but not others, you should di-
vide your channel into two synchansand send a MOD message only to the modifiable one.
As with the method of directly setting the synaptic weight fields, you would most likely use
a script_out or extended object to provide the modification algorithm and calculate a value
to be sent to the synchan with the MOD message.

15.4.3 Hebbian Learning with the hebbsynchan

Hebb (1949) postulated a simple rule for learning that was based on a correlation of the
presynaptic and postsynaptic activity of a neuron. More recently, Hebb’s rule has been ap-
plied to the understanding of the basis of long term potentiation (LTP), a persistent increase
in synaptic efficiency that can be rapidly induced. Brown, Kairiss and Keenan (1990) have
given a detailed review of these Hebbian synapses and the biophysical mechanisms that

252 Chapter 15. Adding Dendrites and Synapses

underlie their behavior. A modern definition of a Hebbian synapse defines it as one that in-
creases its strength with correlated pre- and postsynaptic activity, and decreases its strength
with negatively correlated activity. An anti-Hebbian synapse modifies its synaptic strength
by rewarding negatively correlated activity and punishing correlated activity.

The hebbsynchan object provides for both Hebbian and anti-Hebbian modification of
the weight field of a synaptic connection. This object, described in the GENESIS Reference
Manual, is very similar to the synchan, except that the synaptic weights are not fixed, but
vary as a function of both the pre- and postsynaptic activities. In addition to the weight and
delay fields, these synapses have a field called pre_activity which represents an averaging
of the presynaptic spiking activity through that synapse. Note that each synapse has its own
pre_activity field, just as each synapse has its own field for its weight and delay. The post-
synaptic activity is the same for all synapses in the hebbsynchan, and is a function of the
averaged membrane potential of the compartment to which the hebbsynchan is connected.
The Scripts/examples/hebb directory contains a demonstration based on the script that was
developed in this chapter, but which uses the hebbsynchan instead of the synchan.

15.4.4 Customizing the synchan or hebbsynchan

If your learning algorithm does not fall into a category that is implemented by the hebb-
synchan, you should consider writing your own customized synaptic channel object in C,
to be compiled into the simulator. Although it may be helpful to use script_out or extended
objects for initial development and testing of your learning model, your simulation will run
faster if you use compiled objects. The GENESIS Reference Manual chapter “Customizing
GENESIS” provides detailed instructions for adding new objects and commands to GEN-
ESIS. If your new object is based on a modification of the synchan or hebbsynchan, the
section “Creating New Synaptic Objects” will be particularly useful. In order to make mod-
ification of the weight change algorithm for the hebbsynchan easy, it has been isolated to
a single function in the source file hebbsynchan.c.

15,5 Where Do We Go from Here?

At this point there are a number of directions to go for learning more about GENESIS pro-
gramming. The demonstration simulation MultiCell connects two neurons such as we have
created here in an excitatory-inhibitory loop to produce bursts of pulses. The accompany-
ing file MultiCell.doc gives detailed commentary on the syntax of the scripts that are used
in the simulation. You may wish to modify your script for this tutorial to create a second
neuron and produce your own version of MultiCell. It would also be a good idea to study
the scripts for the CPG simulation from Chapter 8. The Neuron tutorial scripts have good
examples of functions for providing short trains of spikes as inputs to a synapse.

15.6. Exercises 253

For learning how to copy a cell into a large array of interconnected cells, the Orient_tut
demonstration (discussed in Chapter 18) is worthy of study. This simulation also demon-
strates some advanced XODUS features using the “draw” (xdraw) widget. Some of these
are discussed in Chapter 22.

The next two chapters use the GENESIS cell reader to create this same cell with a few
concise commands by reading a data file. The use of the cell reader is the preferred method
for constructing complex neurons with many compartments and channels.

15.6 Exercises

1. Examine the scripts for the MultiCell simulation and determine the parameters that
were used for the two neurons and the mutual connections between them. Use your
makeneuron function to create the two cells and then provide synaptic connections
with the same characteristics as those in MultiCell. Demonstrate that the firing pat-
terns are the same.

2. Try gradually reducing the amount of delay in the feedback connection used in our
model. Why does this eventually increase the interval between action potentials?

3. At the end of Chapter 14, we mentioned the overlay field of the xgraph object. Add
a toggle button to each of your graphs so that you can switch back and forth between
overlay mode.

4. When we connected the soma compartment to the dendrite compartment, we set up
the messages so that the membrane potentials of the two compartments were con-
nected through the dendrite’s axial resistance. Make another copy of your simulation
script that connects the two compartments through the soma’s axial resistance. Use
the showmsg command to verify that the connections are really different.

Then modify both versions of the simulation so that there are no channels, and pro-
vide 0.3 nA current injection to the dendrite compartment, instead of to the soma.
(Rather than modifying the simulation script, you may find it easiest to delete the
channels once the simulation is loaded, and to set the dendrite inject field from the
GENESIS prompt.)

Explain the differences between the results that you obtain for the two situations.
What happens if you significantly reduce the simulation time step? (You may either
use setclock for this, or use a dialog box like the one described in Exercise 1 of Chap-
ter 14.) How small does it need to be in order to get accurate results when the two
compartments are connected through the soma’s axial resistance? Explain this result
in terms of the relevant time constants that arise from the resistances and capacitances

254 Chapter 15. Adding Dendrites and Synapses

in this model. When making a realistic neural model, why is it conceptually wrong
to connect the compartments through the soma Ra?

