Simulator-independent representation of ionic

conductance models with ChannelDB

David Beeman ®! and James M. Bower?

aDept. of Electrical and Computer Engineering, University of Colorado, Boulder,
CO 80309

b Research Imaging Center, University of Texas Health Science Center, and Cajal

Neuroscience Research Center, University of Texas, San Antonio, TX 78284

Abstract

ChannelDB is an implementation of a database of ionic conductance models,
stored in simulator-independent NeuroML format, in order to share channel models
between different neural simulators. At present, ChannelDB is implemented as a
stand-alone module with its own graphical user interface to the database, which is
implemented with MySQL. The NeuroML development kit parser is used to create
Java objects from the NeuroML format (XML) files stored in the database. These
are then accessed with Java software to create simulation scripts for the particular
simulator. ChannelDB with all source code and documentation may be downloaded

from http://www.modelersworkspace.org.

Key words: Database; NeuroML; Realistic modeling

! Corresponding author
E-mail address: dbeeman@dogstar.colorado.edu

Preprint submitted to Elsevier Science 19 October 2003



1 Introduction

Simulation packages such as GENESIS [1], NEURON (3], and other systems that were
developed for structurally realistic neural modeling provide the means to exchange
and collaborate on the development of models by providing standard environments
for the construction of simulations. However, each simulator has its own scripting
language for the construction of simulations, and these are sufficiently different to
make the exchange of models or model components between simulators very difficult.
This is because the simulation scripts are largely procedural programs that tell the
simulator how to construct a model, using the tools and basic model components of

the simulator, rather than being purely declarative descriptions of the model.

In order to facilitate the exchange of neuronal model descriptions in a simulator-
independent format, we developed a declarative XML-based format that has become
the basis for the NeuroML model description language [2]. The Modelers Workspace
(MWS) project [5] is a design for a graphical environment that uses a collection of
software tools to facilitate the collaborative construction of models via the WWW.
It uses NeuroML as the format for the description of models and data. ChannelDB,
a database of ionic conductance models, is an implementation of one of the first core
components of the MWS. At present, ChannelDB is implemented as a stand-alone
module, with its own graphical user interface (GUI) to the database. After further
development, the ChannelDB GUI will be merged into the MWS.

This paper describes the representation used in ChannelDB. It is intended to gen-
erate discussion and collaboration for the further development and extension of this

representation for a wider variety of conductance models and simulators.



2 The ChannelDB Representation

A model neuron is composed of a number of sections or compartments that contain
ionic conductances that we call “channels”. Here, we are using the term as used by
modelers to mean the conductance arising from the behavior of many ion-conducting
pores, rather than the common usage meaning an individual pore. A channel contains

one or more “gates”, or gating variables, with associated exponents.

As a simple example of a model to be stored in ChannelDB, consider the set of
equations used to describe the Hodgkin-Huxley model of the potassium conductance

found in the squid giant axon [4]. The conductance Gk of this channel is given by

where g is the maximum conductance of the channel, and n represents the single
gating variable, with an exponent of 4. The gating variable obeys the differential

equation

dn

= an(V) (1 =n) = (V) @

Hodgkin and Huxley fit the voltage-dependent forward rate parameter o and back-

ward rate parameter § to the expressions

0.01(10 -V
an(V) = % and £3,(V) = 0.125 exp(—V/80) (3)
eap("TY) ~ 1
A model, such as one described by Eqs. (1-3), is well suited to the hierarchical object-
oriented description provided by NeuroML and by object-oriented languages such as

Java. An object representing a Hodgkin-Huxley channel will have a field, or attribute,

for g5 and a set of gates. A gate object will contain objects to represent the forward



and backward rate parameters, and attributes for the exponent and other properties

of the gate.

The appearances of a GENESIS and a NEURON script for a simulation of a conduc-
tance model based on these equations are very different. The different paradigms used
by the two simulators to implement the same model make translation a more difficult
problem than a simple mapping of one syntax to another. It would be very difficult
to spell out a general description of a method to convert one simulation script to the

form of the other.

The listing below gives an example of a NeuroML representation of this model. Unlike
a simulation script, this is a declarative representation that describes everything about

the model, not a procedural description of how to implement the model.

<neuroml class="DBChannel" author="Dave Beeman"
description="Hodgkin-Huxley squid K channel"
keywords="Hodgkin-Huxley potassium squid delayed rectifier"
uniqueID="10262778758662F220@dogstar.colorado.edu"
notes="An implemention of the GENESIS K_squid_hh channel"
Erest="-0.07V">
<channels>
<channel name="K_squid_hh" class="HHChannel" permeantSpecie="K"
Erev="0.09V" Gmax="360.0S/m"2" ivlaw="ohmic">
<gates>
<gate name="X" class="HHVGate" vmin="-0.1" vmax="0.05"
timeUnit="sec" voltageUnit="V" power="4"
instantCalculation="false" useState="false">
<forwardRate class="ParameterizedHHRate" A="-600.0"

="-10000.0" C="-1.0" D="1.0"



E="0.060" F="-0.01"/>
<backwardRate class="ParameterizedHHRate" A="125.0"
B="0.0" C="0.0" D="1.0" E="0.07" F="-0.08"/>
</gate>
</gates>
<log author="Dave Beeman" date="Jul 9, 2002 11:11:15 PM"
literatureReference="A.L. Hodgkin and A.F. Huxley,
J. Physiol. (Lond) 117, pp 500-544 (1952)">
</log>
</channel>
</channels>

</neuroml>

NeuroML provides a number of templates, or classes, that may be used for this de-
scription. In this example, the K_squid_hh channel is derived from the HHChannel
class, which has certain properties such as a reversal potential Erev, and a conduc-
tance density Gmax, given in units of S/m?, which can be used to calculate gy for
a specified area of neural membrane. It also possesses a voltage activated Hodgkin-
Huxley gate, derived from the HHVGate class, to represent n. The gate contains
objects representing the forward and backward rate variables. The gate also contains
attributes for its exponent, the range of voltages expected, the units used, and the
fields “instantCalculation” and “useState”. These boolean attributes, with default
values of “false”, provide additional flexibility for the gate objects. The former speci-
fies that n should be set to its steady state value n.,, and the latter is used to describe
the gate in terms of the state variables 7 = 1/(a + ) and n, instead of the rate
variables a and (. In this example, Egs. (3) for the rate variables are represented
with a parameterized form, derived from the ParameterizedHHRate class. A Tab-

ulatedHHRate class is provided to represent the rates with with tabulated values,



and an EquationHHRate may be used to represent the rate with an equation. Other
types of conductances, such as calcium-dependent channels, make use of classes for

concentration-dependent gates, concentration pools, and current sources.

The channel classes currently defined and implemented for ChannelDB are:

DBChannel: Wrapper class that is used to contain any channel model that is stored
in ChannelDB, along with some descriptive information.

HHChannel: Class used for all the Hodgkin-Huxley type channels in the database.

HHVGate: Used as a member of the gates set of a HHChannel. It contains forward
and backward rate objects that depend on voltage, as well as some additional fields
to describe the behavior of the gate.

HHCGate: Anionic concentration-dependent gate, analogous to the voltage-dependent
HHVGate. It provides an additional field for a reference to the object that provides
the source of the ionic concentration.

HHRate: The superclass for the specialized forms for the rate variables.

ParameterizedHHRate: A subclass of HHRate that expresses rate variables in a
parameterized form typical of many Hodgkin-Huxley type rate equations, rate =
(A+ BV)/(C+ Dexp((E+V)/F)).

EquationHHRate: A subclass of HHRate that expresses the rate variables as equa-
tions.

TabulatedHHRate: A subclass of HHRate that allows a gate’s forwardRate or
backwardRate to be specified by a table at equally spaced voltage (or concentration)
points.

ConcenPool: Describes a single shell model for a concentration pool, with a buildup
of concentration proportional to an incoming current and a time constant for decay.
The object providing the source of concentration to a HHCGate is typically formed

from this class. The source of currents is provided by a set of objects of class



CurrentSource.
CurrentSource: Used by ionic concentration pools to provide information about

the object that provides an ionic current.

3 The ChannelDB Implementation

The NeuroML development kit parser (from http://www.neuroml.org) is used to con-
vert between model representations in the form of Java objects, and the NeuroML
representation. Java objects are created to represent the channel description, using
the classes described above. These are contained within a DBChannel object, and a
single command defined in the development kit creates the NeuroML representation
from the DBChannel object. In our implementation, the NeuroML representations are
stored in a searchable database, which is implemented with MySQL, and accessed with
the ChannelDB GUI. However, there is no requirement to use any particular database

implementation or user interface, nor to even use a database at all.

After a model is selected from the database, the NeuroML parser is used to convert the
representation back into a Java DBChannel object. It is then a relatively simple task
to use Java string manipulation tools to produce a simulation script for the desired
simulator from the information contained in fields of the DBChannel object. This
conversion method has been implemented for GENESIS, and efforts are underway to

extend this to NEURON.



4 Conclusion

ChannelDB is only a first step towards our vision of a distributed database of neuronal
models and model components. We hope that others will join this effort to provide
further enhancements to ChannelDB and to apply and extend the NeuroML repre-
sentation to create other databases of channels, cells, and networks. In particular, we
encourage neural modelers to represent their own channel models with ChannelDB,
creating any extensions to the representation that are needed. In order to encour-
age this continued development, we have made all source code and documentation
for ChannelDB available for downloading from http://www.modelersworkspace.org.
Downloading this software will allow one to use the ChannelDB GUI to access our
prototype database of channel models, and to create one’s own database of channel

models to share with others.

References

[1] J. M. Bower and D. Beeman, The Book of GENESIS: Exploring Realistic Neural Models
with the GEneral NEural SImulation System, second edition. (Springer-Verlag, New York,

1998).

[2] N. Goddard, M. Hucka, F. Howell, H. Cornelis, K. Shanka, and D. Beeman, Towards
NeuroML: Model Description Methods for Collaborative Modelling in Neuroscience,

Philos. Trans. Roy. Soc. 356 (2001) 1209-1228.

[3] M Hines and N. T. Carnevale, The NEURON Simulation Environment, Neural

Computation 9 (1997) 1179-1209.

[4] A. Hodgkin and A. Huxley, A quantitative description of membrane current and its

application to conduction and excitation in nerve, J. Physiol. (London) 117 (1952) 500—



544.

[5] M. Hucka, K. Shankar, D. Beeman, and J. M. Bower, The Modeler’s Workspace:
Making model-based studies of the nervous system more accessible, in G. Ascoli, ed.,

Computational Neuroanatomy: Principles and Methods, (Humana Press, Totowa NJ,

2002).

David Beeman is Professor Adjunct of Electrical and Computer Engi-
neering at the University of Colorado, Boulder, where he is developing
educational materials for computational neuroscience, using the GENE-

SIS simulator. Dr. Beeman also participates in the Modeler’s Workspace

project to create a software framework for the storage, editing, and run-
ning of neural models that are stored in a heterogenous network of databases. Previously, he
spent 20 years at Harvey Mudd College engaged in undergraduate teaching and research in
computational solid state physics, after receiving his Ph.D. in theoretical solid state physics

from UCLA in 1967.

James M. Bower received his Ph.D. in neurophysiology from the Univer-
sity of Wisconsin-Madison. After a postdoctoral fellowship at NYU and the
Marine Biological Laboratory in Woods Hole, Dr. Bower was a professor at

the California Institute of Technology for 17 years. In 2002, he moved to a

joint position as Professor of Computational Biology at the University of
Texas Health Science Center in San Antonio, and the University of Texas San Antonio. Dr.
Bower’s research is focused on both the cerebellum and the mammalian olfactory system,
and his laboratory has been involved in numerous science infrastructure projects including
GENESIS. Dr. Bower also has a long-standing interest and involvement in early science

education.



