
The Genesis 3.0 Project.
A universal graphical user interface and database for research, collaboration, and education in computational neuroscience.
David Beeman, Allan D. Coop, Zhiwei Wang, Michael Edwards, Upinder Bhalla, Hugo Cornelis, James M. Bower. The Computational Biology Initiative, UTHSCSA/UTSA, San Antonio, Texas, USA

Background
The General Neural Simulation System (GENESIS), and its parallel version 
(PGENESIS) was the first broad scale modeling system in computational biology to 
encourage modelers to develop and share model features and components.  From 
the outset, it was developed to support the biologically realistic simulation of neural 
systems, ranging from subcellular components and biochemical reactions to com-
plex models of single neurons, simulations of large networks, and systems-level 
models.  Since its release for general use in 1988, GENESIS has provided one of 
the foundations for the ongoing course in Methods in Computational Neuroscience 
at Woods Hole MA, as well as courses offered in the European Union, Mexico, 
Brazil, India, and in more than 50 universities around the world, where it has been 
used both as an instructional tool in realistic modeling of the nervous system, and 
as a simulation based tool for neurobiological education in general. The most recent 
release of GENESIS, version 2.3, became available in March 2006, and runs under 
most UNIX-based systems with the X Window System, including Linux, OS/X and 
Windows with Cygwin.

The release of the free internet edition of The Book of GENESIS (Bower & 
Beeman, 2003) and the browser-based self-paced GENESIS Modeling Tutorials
(Beeman, 2005), which may be downloaded from the GENESIS web site, coupled 
with an active users group (BABEL), have also made it easy for individuals to learn 
GENESIS modeling without the necessity of attending courses or workshops. This 
substantial support for the use of GENESIS has also provided the base for an exten-
sive and growing use of the software system in biological research, as evidenced by 
the rate of growth in the number of peer reviewed scientific papers using GENESIS 
from outside of the Bower laboratory (Figure 1).

GENESIS 1 and 2
Most current neuronal simulators are typically non-scalable in design, the result of 
development by either a single person or a restricted group.  In contrast, the archi-
tecture of GENESIS has always facilitated user customization and user contribu-
tions and recognized that computational neuroscience and neuroscience in general 
has a broad scope and many branches.

The object-oriented approach taken by GENESIS and its high-level simulation
language allows modelers to easily extend the capabilities of the simulator, and to 
exchange, modify, and reuse models or model components. Simulations are con-
structed from libraries of pre-compiled objects including:

 1) Neural components, such as compartments, ionic conductances, axons, and
  synapses,
 2) A kinetics library and its GUI Kinetikit for modeling biochemical reactions,
 3) Objects for computing intracellular ionic concentrations from channel
  currents, for modeling the diffusion of ions within cells, e.g., concentration
  pools, ionic pumps, and buffers,
 4) Devices for providing stimulation (such as pulse generators, spike train
  generators, voltage clamp circuitry) and analysis (e.g. spike train analysis
  objects),
 5) Graphical objects used for creating custom displays, and
 6) The hsolve library with elements and functions for the efficient implicit
  solution of the systems of differential equations that describe dendritic trees,
  as well as routines that maximize speed with faster, more stable numerical
  integration.

The scripting language and the modules are powerful enough that often only a few 
lines of script are needed to specify a sophisticated simulation. This approach 
allows one to create a new GENESIS simulation by modifying one of the many ex-
ample and tutorial simulations that are provided with GENESIS, the Modeling Tu-
torials, or that are available from the GENESIS web site.

Similarly, scripting with GENESIS GUI libraries (XODUS), allows easy creation of 
displays, as in the visualization of a spreading wave of activation generated with 
GENESIS 2 in the Nenadic et al. (2003) large scale model of turtle visual cortex 
(Figure 2). Davis (Data Viewing System), is a general-purpose data viewer de-
signed for the simultaneous display and analysis of a large number of dynamic data 
sets. It has been used for post-run analysis of this model using files generated by 
GENESIS 2.  The GENESIS 3 design will allow for direct interfacing of such tools.

These features have resulted in GENESIS being one of the few simulators used for 
a broad range of activities from education to research, and from subcellular bio-
chemical pathways to neuronal networks. However, the recent history of GENESIS 

has shown it to be increasingly difficult for developers from a wide range of scien-
tific disciplines to contribute to simulator design and development. Although the 
GENESIS scripting language interface produces highly efficient modular object-
oriented simulations that are easy to modify and extend, this is not the case with the 
source code which does not cleanly separate into its underlying components. It is 
difficult to add more modern Java-based graphical interfaces, alternate script pars-
ers, and interfaces via the WWW. Such non-scalable architecture is not unique to 
GENESIS. The result is that experimentalists are often denied the opportunity to 
more easily ground empirical observation within the formalism of computational 
neuroscience.

The Computational Biology Initiative Architecture
The CBI (Computational Biology Initiative) architecture provides a modular para-
digm that places stand-alone software components into logical relationships. In this 
it shares a number of ideas with the well-known model-view-controller (MVC) 
paradigm. The distinguishing feature of the CBI architecture is that the back end 
comprises numerical solvers rather than relational databases. The data layers in the 
CBI architecture correspond to high-level data associated with biological concepts 
and extend to low level data such as numerical values (Figure 3). The benefit of this 
layering of data is that it allows the mathematical and biological aspects of a model 
to be distinguished and separated.

Clear delineation of the modules in the CBI architecture allows both developers and 
users to choose to contribute to a single component with limited complexity, instead 
of being forced to contribute to the whole simulator and be exposed to tremendous 
complexity. Within the CBI paradigm each software component becomes self con-
tained in the sense that it can be run independently. This has important advantages 
as it facilitates the interoperability of software obtained from different sources by:

 1) Reduced complexity of software modules compared to a unitary system.
 2) Simplified documentation of modules in terms of inputs and outputs.
  3) Easy incorporation or removal of individual modules as required.
 4) Simplified development and testing of components as stand alone modules.
 5) Clear delineation of scope for new module development.

The CBI architecture provides three significant advantages for software develop-
ment:

 1) Modules can be run separately on different machines. For example, the GUI
  and modeling environment might run locally, while the simulator is run
  elsewhere either serially or in parallel on more powerful machines.
 2) Decomposition of an application into multiple software components allows
  reuse and extension of individual modules, whether stand alone or otherwise,
  clearly facilitating model development and research progress.
 3) Individual components can be independently updated, enhanced, or replaced
  when needed, thus the life cycle of a modular architecture is smoother than
  that of a non-scalable application.

The GENESIS 3.0 Project
With the growing interest and involvement of both neurobiologists and technolo-
gists in computational neuroscience, it has become increasingly clear that a more 
sophisticated approach to both simulation environments and documentation of 
modeling efforts is required. While GENESIS 1 and the upgraded version 2 were 
both self contained modeling systems, GENESIS 3.0 (G3) is being developed 
within the paradigm of the CBI architecture. Importantly, an enhanced interfacing 
capability with other neuroscience software tools and databases is now being pro-
vided (Figure 4).

The adoption of the CBI paradigm in the development of G3 has been prompted by 
recent technical advances in gluing (e.g. Swig and Python) and interfacing (e.g. 
SOAP), and an increased maturity in model exchange languages (e.g. NeuroML) 
and meta data exchange formats (e.g. BrainML). Specifically, the recently devel-
oped CBI simulator architecture is an open framework that provides the general 
context for G3 development. The CBI architecture focuses users on the need to con-
ceive, organize, execute and evaluate simulations, while allowing the development 
of new tools to support simulation based education, collaboration, and publication. 
Consequently, G3 no longer includes parsers, script interpreters, run time schedul-
ers, numerical solver engines, or the other components actually required to run 
simulations. Instead, G3 is being developed with the necessary interfaces that will, 
in principle, allow any simulation system to use its features.

A. Graphical User Interface
G3 is being developed with an open architecture that will allow different simulation 
systems to use its features. GENESIS, MOOSE, Neurospaces, NeuroML represen-
tations, and neuron imaging files (e.g. EM and confocal) will initially be supported. 
Here, simulator specific formats will be converted to the G3 internal representation 
which will then be available for manipulation by the GUI for viewing and editing.

The majority of simulators including GENESIS 1 and 2 are C/C++ programs. G3 is 
being developed as a Java based client/server application that communicates via 
sockets. One advantage of this approach is that Java Web Start technology will 
allow the most current version of the GUI to be deployed over the Internet with a 
single button click. The client and server can either be local on the same machine or  
distributed and run over the Internet via a communication socket. G3 compatibility 
is achieved by running an application as a daemon with interactions between nu-
merical solvers and the console redirected to the socket. For example, in GENESIS, 
commands will no longer be input from the console, but rather solvers will accept 
commands from the GUI via a communication socket. This requires solution of the 
real time communication problem as the GUI and the numerical solvers are mod-
ules in the CBI architecture and are no longer in the same program as with a tradi-
tional unitary simulator. Real time communication between modules is achieved via 
the creation of dummy objects for communicating between the client and the server. 
For example, GENESIS 2 XODUS widgets are replaced by dummy objects prior to 
being forwarded to the server. The dummy objects then act as proxies on the server 
for the real widgets on the client side.

B. Messaging Object Oriented Simulation Environment
MOOSE reimplements the core GENESIS simulator code with much faster and 
cleaner messaging. It provides a general framework for making large, complex 
models, typically of biological and neuronal networks (Figure 5). It spans the range 
from single molecules to subcellular networks, single cells to neuronal networks, 
and extends to still larger systems. MOOSE is backwards-compatible with GEN-
ESIS, and forward compatible with Python and XML-based model definition stan-
dards such as SBML and MorphML. Features of MOOSE for kinetic modeling and 
simulation include:

 1) Much faster stochastic solvers and very fast ODE solvers.
 2) Access to nine different GNU Scientific Library integration methods.
 3) Backward compatibility with G2. SLI is compatible. Currently refining
  readcell, the kkit reader, and implementing G2 objects.

 4) Python scripting option.
 5) Faster and more powerful messaging than G2.
 6) General solver interface for plug-in numerical modules.
 7) Unified reference scheme across nodes for transparent parallelization.

C. Neurospaces Project
Compliant with the CBI architecture, the Neurospaces project embodies several 
completely modular software components implemented in a state-space theoretical 
framework (Figure 6). It supports a global namespace that is separated from solver 
instances, thereby separating and allowing for optimization of the numerical core 
independently of the modeling package. Neurospaces imports GENESIS .p files, 
NeuroML, and .swc cell morphology files, and exports NeuroML files. Currently, 
the following G3 compatible modules have been implemented:

 1) Heccer: A fast compartmental solver based on the GENESIS hsolve that can
  be instantiated from C, Perl, or other scripting languages.
 2) Neurospaces: Middle-ware dealing with biological entities and end-user
  concepts instead of mathematical equations.
 3) Simple Scheduler in Perl: SSP can be constructed to bind Neurospaces
  and Heccer and activate them correctly, such that they work together on a
  single simulation.

Other modules in development include:
 1) Neurospaces Studio: Tools for graphical browsing and command line usage.
 2) Geometry Library: A general purpose library containing essential geometrical
  operators not commonly found in other geometrical libraries.
 3) Reconstruct Interface: Supports conversion of contours exported by the
  Reconstruct software to the Neurospaces declarative NDF format.
 4) Project Browser: Inspect projects and simulation results.

REFERENCES and URLS
Beeman D. (2005) GENESIS Modeling Tutorial. Brains, Minds, and Media. 1: bmm220 (urn:nbn:de:0009-3
 2206).  (http://www.brains-minds-media.org).
Bower JM & Beeman D, (1998) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral
 NEural SImulation System, Third (Internet) Ed., www.genesis-sim.org/GENESIS/bog/bog.html.
Nenadic Z, Ghosh, BK & Ulinski P. (2003) Propagating waves in visual cortex: A large scale model of
 turtle visual cortex, J Computational Neuroscience 14:161-184.

The GENESIS home page: http://genesis-sim.org/GENESIS
The MOOSE project home page: http://sourceforge.net/projects/moose/
The Neurospaces project home page:  http://neurospaces.org

Figure 3: CBI simulator functional architecture

Numerics

Biology North-bound interfaces

South-bound interfacesSimulation

Modeling

Data Bindings

(e.g. Neurospaces, GENESIS Namespace, findsolve)

Function Bindings

(e.g. SWIG, SSP, GENESIS Lib Declarations)

Solvers

(e.g. hsolve, heccer, ksolve)

Scripting
Libs & Apps

(e.g. GENESIS SLI, Python, Perl)

DB Interfaces

(e.g. Geometry Lib, Neuroconstruct,
Neuromorph, XSLT)

Model GUI

(e.g. G3, Neuroconstruct GUI)

Figure 6: Neurospaces

Figure 4: GENESIS 3.0

C
B

I A

rc
hitecture InterfaceMOOSE

or
Neurospaces

Solvers

Figure 5: MOOSE

Figure 1: Publications Figure 2: G2 GUI

Modeling Tool Set Simulation Controller: SSP

Modeling
Tools

(Optional)

Model
Container

Neurospaces

Solver
Heccer

External Tools CBI Complient
Simulator

Networks

Cells

Channels

G3 GUI

Model
and
Data

Library


