
The CBI Architecture for Computational Simulation of
Realistic Neurons and Circuits in the GENESIS 3 Software Federation.
Hugo Cornelis1, Michael Edwards1, Allan D. Coop2, James M. Bower1. The Computational Biology Initiative.
1Research Imaging Center and 2Dept. Epidemiology and Biostatistics, UT Health Science Center, San Antonio, Texas 78229, USA.

Implementation
Libraries

(functions specific
to applications)

Discrete Representations
(tables, meshes, enumeration schemes)

G2
Compatibility

(core bridge example)

Core Bridge
(function delegator)

Controller
(simulation clock)

Scripting API
(scripting interface definitions)

Experiment
Model

Container
(stimulation & data

analysis paradigms)

Biology
Model

Container
(biology-continuous

math translator)

Model Data

Implementation Control

Simulation Control

Simulation Data

North-bound interfaces

South-bound interfaces

Biology

Numerics

Graphic User Interface

model &
results

• Connects to other modeling
 components to provide a GUI for
 the data base connectors and
 the biological and experimental
 model containers.
• Provides different views of the
 model and the possible work
 flows between them.
• Color-code morphology and
 network behavior according to
 user specified activity.
• Plot temporal evolution of solved
 variables.

simulation
control

• Buttons for interaction with the
 controller, e.g. to start and stop
 a simulation.
• Buttons and dialog boxes to
 specify experimental model
 inputs and output, e.g. stimulate
 model at a particular location.
• Browser provides access to sets of
 related simulations and results.

Scripts & Applications
• Applications and tutorials written in high-level
 scripting languages.
• Connect model and stimulus using a
 procedural paradigm.
• These applications have a focus on specific
 research questions or educational tutorials.
• They define user work flows to run simulations
 and to prepare results for analysis.

Core Bridge
• Translates procedural descriptions of a
 simulation (including legacy) by
 decomposition into modeling vs.
 implementation control.
• The core bridge delegates procedural scripting
 statements to the appropriate software
 components in the simulator.

G2 Compatibility
• A specific implementation of the core bridge
 provides backward compatibility with the
 GENESIS 2 software platform.
• Currently this implementation of a core bridge
 is complete for simple single neuron
 simulations and near complete for the
 Purkinje cell model.

Implementation Libraries
• Contain glue functions to/and external libraries
 for a variety of purposes, for example for
 result analysis.
• Contains neuroscience specific libraries that
 may be implemented directly.
• Examples include, the GNU Scientific Library
 (GSL), the Perl Data Language (PDL), and
 the Scientific Library for Python (SciPy).

Sequencer Bridge
(experiments)

Solver Bridge
(model inspectors)

The Problem
The repetitive incorporation of foreign source code
into an application ultimately makes the source
code structure so complicated that the core soft-
ware becomes difficult, if not impossible, to extend.

The resulting stand-alone applications become
monolithic and their life cycles are moved from ex-
tension to maintenance.

A Solution
We propose that in computational neuroscience
two fundamental axes can be employed to parti-
tion the functionality of a neural simulator:

1. In the computational realm there is a distinction
 between data and control.

2. In the simulation realm there is a distinction
 between the biological model and its
 numerical implementation.

The Advantages
• Single component complexity is reduced
 compared to that of the total software system.
• Components can be documented and tested as
 isolated entities in terms of inputs and outputs.
 Facilitates communication among developers.
• Unnecessary or obsolete components are easily
 replaced, or removed from the architecture.
• A component can easily be tested stand-alone.
• Importantly, the CBI architecture clearly
 delineates the scope of new development.

The CBI Architecture
• The CBI simulator software architecture places
 stand-alone software components into the
 logically layered diagram illustrated above.
• These layers map naturally to the occurence of
 high-level (e.g. biological concepts) versus
 low-level data (e.g. numerical values).
• Independent of the technology used, the diagram
 can be employed, by the user and developer
 communities to communicate about the global
 concepts and functions present in the software.

Data Control

High-level

Low-level

Biology

Numerics

User Workflows

Scheduling

Relationship between the four functional modules
of a neural simulator.

Horizontal and vertical interactions maintain soft-
ware modularity, whereas, diagonal interactions
lead to monolithic software architectures.

Numerical Solvers & Sequencers
(difference equation solvers, sequence executors)

Communication Infrastructure
(optimized for numerics & DE communication)

Model Tools
• Model version history manager: Track and record history of model development.
• Data base connector. Acquire model from data base such as neuromorph.org, convert it to a format that
 can be understood by the model container.
• Model and result analyzer. Inspect a model stored in the model container and extract, for example,
 morphological or connectivity characteristics for quantification of model components,
• Model and result annotator. Automatic or manual text attachment to whole or part of model
• Automatic model constructor: For example, parameter searching, development of dendritic morphology,
 software components that embed algorithms for automatic model construction.

Biology Model Container
• Allows a user to define a model in terms of
 biological properties such as spine,
 morphology, circuits and their connectivity.
• Stores Biological Model: Model is available
 for inspection by other software modules.
• Translates hierarchical biological model to an
 expanded numerical model for solvers.
• Translates model connectivity to connectivity
 between solvers.

Conclusions
• Each box illustrated above represents a class of
 stand-alone software components. Gluing
 together the appropriate subsets of these
 components results in different functional
 applications.
• The Neurospaces Project follows this approach to
 implement the core of a new GENESIS
 simulator.
• The federated CBI architecture we propose has
 important advantages for both the software
 developer and user communities.

References &
Web Links

Eckerson WW (1995) Three tier client/server architecture:
 Achieving scalability, performance, and efficiency in
 client server applications. Open Inf. Syst. 10: 3-20.

Galis, A (2000) Multi-Domain Communication Managment.
 CRC Press: Boca Raton, FL.

GENESIS 2: http://www.genesis-sim.org/
GENESIS 3: http://genesis-sim.org/
Neurospaces: http://www.neurospaces.org/

 Experiment Model
 Container

• Allows definition of the experiment in terms of
 actions taken on the biological model.
• Stores model of stimulus paradigm and output
 definitions.
• Defines and stores a hierarchical sequence of
 actions (e.g. start and stop times of current
 injection) and their dependencies.

Graphic
User

Interface

model &
results

simulation
control

Sequencer Bridge
• Data binding translates the sequence of stimulus actions and output
 definitions to data structures specific to a sequencer implementation.
• Decouples sequencer backend from the experiment model containers to
 allow independent optimization of both.
• Gives simple 1-to-1 mapping/translation of model data with sequencer.

Solver Bridge
• Data Binding Framework: Gives a simple 1-to-1 mapping/translation of a
 numerically expanded mathematical representation of a model into data
 structures that match a specific solver implementation.
• Decouples the numerical backend from model containers: Allows for
 separate optimization of model containers and solvers.

Numerical Solvers & Sequencers
• Low-level backends at the software and/or hardware levels that solve numerical equations using specific algorithms.
• Discretization and tabulation of fixed mathematical functions according to a user setable accuracy specific to the solvers.
• Sequence executors provide a physical implementation of an experimental protocol in computo.

Discrete Representations
• Internal software publication (invisible to users) of the numerical representations of a model, e.g. discretized tables of channel gate
 kinetics, dendritic morphology meshes, Hines enumeration of compartmentalized morphology.
• Annotation of internal publications for identification purposes and intelligent reuse.

Scripting APIs
• A series of specifications that glue the functionality of other software components to existing scripting languages. The API may (preferentially) be automatically
 generated via SWIG.
• Additional code may be required to translate low level APIs to high level APIs typical of scripting languages.

Communication Infrastructure
• Establishes run-time communication between different solvers and output elements working on the same model.
• Optimized for communication of array based (numerical) data.
• Differential implementation for serial as opposed to parallel hardware.

Controller
• Activates the solver and the communication infrastructure as required.
• Contains the global simulation time clock.
• Contains the core functions such as those that start and stop a simulation.

Model Tools
(DB connectors,

parameter searchers,
model analyzers)

Scripts
&

Applications
(GENESIS SLI,

Python, Perl, . . .)

