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• Connects to other modeling
      components to provide a GUI for 
      the data base connectors  and 
      the biological and experimental 
      model containers.
• Provides different views of the 
      model and the possible work 
      flows between them.
• Color-code morphology and
      network behavior according to 
      user specified activity.
• Plot temporal evolution of solved
        variables.

simulation
control

• Buttons for interaction with the 
      controller, e.g. to start and stop 
      a simulation. 
• Buttons and dialog boxes to 
      specify experimental model 
      inputs and output, e.g. stimulate 
      model at a particular location.
• Browser provides access to sets of 
      related simulations and results.

Scripts & Applications
• Applications and tutorials written in high-level 
 scripting languages.
• Connect model and stimulus using a
 procedural paradigm. 
• These applications have a focus on specific
 research questions or educational tutorials.
• They define user work flows to run simulations 
 and to prepare results for analysis.

Core Bridge
• Translates procedural descriptions of a
 simulation (including legacy) by
 decomposition into modeling vs.
 implementation control.
• The core bridge delegates procedural scripting 
 statements to the appropriate software
 components in the simulator. 

G2 Compatibility
• A specific implementation of the core bridge 
 provides backward compatibility with the 
 GENESIS 2  software platform.
• Currently this implementation of a core bridge 
 is complete for simple single neuron
 simulations and near complete for the
 Purkinje cell model.

Implementation Libraries
• Contain glue functions to/and external libraries 
 for a variety of purposes, for example for 
 result analysis.
• Contains neuroscience specific libraries that 
 may be implemented directly.
• Examples include, the GNU Scientific Library 
 (GSL), the Perl Data Language (PDL), and 
 the Scientific Library for Python (SciPy). 
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The Problem
The repetitive incorporation of foreign source code 
into an application ultimately makes the source 
code structure so complicated that the core soft-
ware becomes difficult, if not impossible, to extend. 

The resulting stand-alone applications become 
monolithic and their life cycles are moved from ex-
tension to maintenance.

A Solution
We propose that in computational neuroscience 
two fundamental axes can be employed to parti-
tion the functionality of a neural simulator:

1. In the computational realm there is a distinction 
 between data and control.

2. In the simulation realm there is a distinction
 between the biological model and its
 numerical implementation.

The Advantages
• Single component complexity is reduced
 compared to that of the total software system.
• Components can be documented and tested as 
 isolated entities in terms of inputs and outputs. 
 Facilitates communication among developers.
• Unnecessary or obsolete components are easily 
 replaced, or removed from the architecture.
• A component can easily be tested stand-alone.
• Importantly, the CBI architecture clearly
   delineates the scope of new development.

The CBI Architecture
• The CBI simulator software architecture places
 stand-alone software components into the
 logically layered diagram illustrated above.  
• These layers map naturally to the occurence of 
 high-level (e.g. biological concepts) versus 
 low-level data (e.g.  numerical values). 
• Independent of the technology used, the diagram 
 can be employed, by the user and developer 
 communities to communicate about the global 
 concepts and functions present in the software.
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Relationship between the four functional modules 
of a neural simulator.

Horizontal and vertical interactions maintain soft-
ware modularity, whereas, diagonal interactions 
lead to monolithic software architectures. 

Numerical Solvers & Sequencers
(difference equation solvers, sequence executors)

Communication Infrastructure
(optimized for numerics & DE communication)

Model Tools
• Model version history manager: Track and record history of model development. 
• Data base connector. Acquire model from data base such as neuromorph.org, convert it to a format that
 can be understood by the model container.
• Model and result analyzer. Inspect a model stored in the model container and extract, for example,
 morphological or connectivity characteristics for quantification of model components,
• Model and result annotator. Automatic or manual text attachment to whole or part of model
• Automatic model constructor: For example, parameter searching, development of dendritic morphology,
 software components that embed algorithms for automatic model construction.

Biology Model Container
• Allows a user to define a model in terms of 
 biological properties such as spine,
 morphology, circuits and their connectivity. 
• Stores Biological Model: Model is available
 for inspection by other software modules.
• Translates hierarchical biological model to an
 expanded numerical model for solvers.
• Translates model connectivity to connectivity
 between solvers.

Conclusions
• Each box illustrated above represents a class of 
 stand-alone software components. Gluing
 together the appropriate subsets of these
 components results in different functional
 applications.
• The Neurospaces Project follows this approach to 
 implement the core of a new GENESIS
 simulator.
• The federated CBI architecture we propose has 
 important advantages for both the software
 developer and user communities.
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• Allows definition of the experiment in terms of
 actions taken on the biological model. 
• Stores model of stimulus paradigm and output
 definitions.
• Defines and stores a hierarchical sequence of
 actions (e.g. start and stop times of current
 injection) and their dependencies.
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Sequencer Bridge
• Data binding translates the sequence of stimulus actions and output
 definitions to data structures specific to a sequencer implementation.
• Decouples sequencer backend from the experiment model containers to
 allow independent optimization of both.
• Gives simple 1-to-1 mapping/translation of model data with sequencer.

Solver Bridge
• Data Binding Framework: Gives a simple 1-to-1 mapping/translation of a
 numerically expanded mathematical representation of a model into data 
 structures that match a specific solver implementation.
• Decouples the numerical backend from model containers: Allows for
 separate optimization of model containers and solvers.

Numerical Solvers & Sequencers
• Low-level backends at the software and/or hardware levels that solve numerical equations using specific algorithms.
• Discretization and tabulation of fixed mathematical functions according to a user setable accuracy specific to the solvers.
• Sequence executors provide a physical implementation of an experimental protocol in computo.

Discrete Representations
• Internal software publication (invisible to users) of the numerical representations of a model, e.g. discretized tables of channel gate
 kinetics, dendritic morphology meshes, Hines enumeration of compartmentalized morphology.
• Annotation of internal publications for identification purposes and intelligent reuse.

Scripting APIs
• A series of specifications that glue the functionality of other software components to existing scripting languages. The API may (preferentially) be automatically 
 generated via SWIG.
• Additional code may be required to translate low level APIs to high level APIs typical of scripting languages.

Communication Infrastructure
• Establishes run-time communication between different solvers and output elements working on the same model.
• Optimized for communication of array based (numerical) data.
• Differential implementation for serial as opposed to parallel hardware.

Controller
• Activates the solver and the communication infrastructure as required.
• Contains the global simulation time clock.
• Contains the core functions such as those that start and stop a simulation.
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