The Computational Biology Initiative UL

The CBI Architecture for Computational Simulation of
Realistic Neurons and Circuits in the GENESIS 3 Software Federation.

Hugo Cornelis!, Michael Edwards!, Allan D. Coop?, James M. Bowerl. The Computational Biology Initiative.
I Research Imaging Center and “Dept. Epidemiology and Biostatistics, UT Health Science Center, San Antonio, Texas 78229, USA.

Simulation Control

Model Data North-bound interfaces

Model Tools

« Model version history manager: Track and record history of model development.

» Data base connector. Acquire model from data base such as neuromorph.org, convert it to a format that model &
can be understood by the model container. results

* Model and result analyzer. Inspect a model stored in the model container and extract, for example,
morphological or connectivity characteristics for quantification of model components,

» Model and result annotator. Automatic or manual text attachment to whole or part of model the bologiodl o soormenta

« Automatic model constructor: For example, parameter searching, development of dendritic morphology, e e e
software components that embed algorithms for automatic model construction.

Biology

Scripts & Applications

Graphic User Interface Implementation Libraries

: : Applications and tutorials written in high-level
simulation scripting languages.
control » Connect model and stimulus using a
procedural paradigm.
* These applications have a focus on specific
research questions or educational tutorials.
» They define user work flows to run simulations
and to prepare results for analysis.

« Contain glue functions to/and external libraries
for a variety of purposes, for example for
result analysis.

» Contains neuroscience specific libraries that
may be implemented directly.

» Examples include, the GNU Scientific Library
(GSL), the Perl Data Language (PDL), and
the Scientific Library for Python (SciPy).

« Buttons for interaction with the
controller, e.g. to start and stop
a simulation.

* Buttons and dialog boxes to
specify experimental model
inputs and output, e.g. stimulate
model at a particular location.

» Browser provides access to sets of
related simulations and results.

» Connects to other modeling
components to provide a GUI for

model and the possible work
flows between them.

* Color-code morphology and
network behavior according to
user specified activity.

* Plot temporal evolution of solved

variables.

Biology Model Container Core Bridge G2 Compatibility

* A specific implementation of the core bridge
provides backward compatibility with the
GENESIS 2 software platform.

 Currently this implementation of a core bridge
iIs complete for simple single neuron
simulations and near complete for the

Purkinje cell model.

Experiment Model
Container

* Allows a user to define a model in terms of
biological properties such as spine,
morphology, circuits and their connectivity.

- Stores Biological Model: Model is available actions taken on the biological model.
for inspection by other software modules. « Stores model of stimulus paradigm and output

- Translates hierarchical biological model to an definitions. e oo

expanded numerical model for solvers. » Defines and stores a hierarchical sequence of P model anatyzors)
 Translates model connectivity to connectivity

actions (e.g. start and stop times of current
between solvers.

injection) and their dependencies. Biology Experiment
Model Model

Container Container
(biology-continuous (stimulation & data
math translator) analysis paradigms)

 Translates procedural descriptions of a
simulation (including legacy) by
decomposition into modeling vs.
Implementation control.

| * The core bridge delegates procedural scripting
chpts Implementation statements to the appropriate software
Applications Libraries components in the simulator.

(functions specific
(GENESIS S'—' to applications)

Python, Perl, .

CoreBrldge
(core bridge example)
A B A EEDEEEETDO

Scripting API
(scripting interface definitions)
Ny, g
Controller e,
(simulation clock)

Communication Infrastructure
(optimized for numerics & DE communication)

* Allows definition of the experiment in terms of

Graphic
User
Interface

model & simulation
results control

Solver Bridge Sequencer Bridge
(model inspectors) (experiments)

Discrete Representations

(tables, meshes, enumeration schemes)

Solver Bridge Sequencer Bridge Scripting APls

« Data Binding Framework: Gives a simple 1-to-1 mapping/translation of a
numerically expanded mathematical representation of a model into data
structures that match a specific solver implementation.

* Decouples the numerical backend from model containers: Allows for
separate optimization of model containers and solvers.

» Data binding translates the sequence of stimulus actions and output
definitions to data structures specific to a sequencer implementation.

» Decouples sequencer backend from the experiment model containers to
allow independent optimization of both.

» Gives simple 1-to-1 mapping/translation of model data with sequencer.

* A series of specifications that glue the functionality of other software components to existing scripting languages. The APl may (preferentially) be automatically
generated via SWIG.
» Additional code may be required to translate low level APls to high level APIls typical of scripting languages.

Numerical Solvers & Sequencers
(difference equation solvers, sequence executors)

....
....
L 4

Controller

Discrete Representations

* Internal software publication (invisible to users) of the numerical representations of a model, e.g. discretized tables of channel gate
Kinetics, dendritic morphology meshes, Hines enumeration of compartmentalized morphology.
« Annotation of internal publications for identification purposes and intelligent reuse.

* Activates the solver and the communication infrastructure as required.
 Contains the global simulation time clock.
 Contains the core functions such as those that start and stop a simulation.

Communication Infrastructure

Numerical Solvers & Sequencers

» Low-level backends at the software and/or hardware levels that solve numerical equations using specific algorithms.
* Discretization and tabulation of fixed mathematical functions according to a user setable accuracy specific to the solvers.
« Sequence executors provide a physical implementation of an experimental protocol in computo.

« Establishes run-time communication between different solvers and output elements working on the same model.
» Optimized for communication of array based (numerical) data.
* Differential implementation for serial as opposed to parallel hardware.

Numerics Simulation Data South-bound interfaces Implementation Control

The Problem The CBI Architecture References &

Web Links

A Solution The Advantages Conclusions

o [o

The repetitive incorporation of foreign source code
into an application ultimately makes the source
code structure so complicated that the core soft-

ware becomes difficult, if not impossible, to extend.

The resulting stand-alone applications become
monolithic and their life cycles are moved from ex-
tension to maintenance.

We propose that in computational neuroscience
two fundamental axes can be employed to parti-
tion the functionality of a neural simulator:

1.In the computational realm there is a distinction
between data and control.

2.In the simulation realm there is a distinction
between the biological model and its
numerical implementation.

HigthVd Biology User Workflows

Numerics Scheduling
Low-level

Relationship between the four functional modules
of a neural simulator.

Horizontal and vertical interactions maintain soft-
ware modularity, whereas, diagonal interactions
lead to monolithic software architectures.

 The CBI simulator software architecture places
stand-alone software components into the
logically layered diagram illustrated above.

 These layers map naturally to the occurence of
high-level (e.g. biological concepts) versus
low-level data (e.g. numerical values).

* Independent of the technology used, the diagram
can be employed, by the user and developer
communities to communicate about the global
concepts and functions present in the software.

- Single component complexity is reduced
compared to that of the total software system.
- Components can be documented and tested as

isolated entities in terms of inputs and outputs.

Facilitates communication among developers.

* Unnecessary or obsolete components are easily
replaced, or removed from the architecture.

* A component can easily be tested stand-alone.

* Importantly, the CBI architecture clearly
delineates the scope of new development.

 Each box illustrated above represents a class of
stand-alone software components. Gluing
together the appropriate subsets of these
components results in different functional
applications.

» The Neurospaces Project follows this approach to
implement the core of a new GENESIS
simulator.

* The federated CBI architecture we propose has
important advantages for both the software
developer and user communities.

Eckerson WW (1995) Three tier client/server architecture:
Achieving scalability, performance, and efficiency in
client server applications. Open Inf. Syst. 10: 3-20.

Galis, A (2000) Multi-Domain Communication Managment.
CRC Press: Boca Raton, FL.

GENESIS 2: http://www.genesis-sim.org/
GENESIS 3: http://genesis-sim.org/
Neurospaces: http://www.neurospaces.org/

