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that any new files are quickly and automatically incorporated into 
the documentation system.

G-Tube
The G-3 GUI is fully configurable and starts from the user workflow. 
The figure below shows a popup menu revealed by rolling over 
Step 1 in the user workflow. The menu item Load Model has been 
selected. This generates a list of the NDF files that are available. 
The model edsjb1994_partitioned.ndf has been selected and 
loaded into the G-Shell. The G-Shell (lower window in GUI) reports 
that the model is successfully loaded. It can now be explored 
before continuing with Step 2 of the user workflow.

Conclusions
The CBI architecture exhibits several novel features. For example, 
the separation of stimulus protocols from a given model cell to par-
tition a model from its numerical simulation. This allows both to be 
combined dynamically at run time for a given simulation and simpli-
fies the generation of batch files for multiple simulations. Impor-
tantly, this separation allows any simulation to be run with any 
model, a feature that greatly facilitates iterative model development 
and comparison.
The isolation of a cell model from a given simulation configuration 
also enables convenient exploration and quantification of proper-
ties of the biological model. For example, no special functions or 
scripting are required to quantify properties of a model cell such as 
total or partial volumes or surface areas, the number of dendritic 
branches or branch points per dendritic tip, or the average so-
matopetal to dendritic tip distance. Further, with G-3, the Model 
Container can be queried directly by simple commands and com-
mand line options.

BOX 1: Morphological and functional comparison of cerebellar 
Purkinje neurons from four different species.
This study aimed to (i) determine the computational consequences 
of differences in the dendritic morphologies of Purkinje cells found 
in different species of mammals and non-mammals, and (ii) char-
acterize the morphological and functional difference between cer-
ebellar Purkinje neurons from different species, including: fish, 
turtle, guinea pig, and rat.

To characterize the morphological differences between species, 
common morphological parameters were examined,  e.g. number 
of dendritic branch points and total cell volume and surface area.  
Passive models of all morphologies were constructed using the  
G-3 simulation environment. Three different stimulation protocols 
were used to characterize the passive dendritic structure of each 
morphology by running a total of over 120,000 simulations. Studies 
were designed to obtain insight into: (i) the steady state electro-
tonic structure of the Purkinje cell dendritic trees, (ii) somatic re-
sponses to excitatory synaptic events, given to a single dendritic 
compartment, and (iii) by recording the dendritic membrane poten-
tial resulting from somatic action potentials generated with a simu-
lated dynamic voltage clamp at the soma. Morphologies were visu-
ally and quantitatively different between the different species. 
Mammalian Purkinje cells have more dendritic tips and branch 
points, and a greater overall surface, but the overall cell volume is 
lower, resulting in a greater surface to volume ratio. The distance 
between the soma and the dendritic tips is decreased in mammals. 
The steady state membrane potential of the dendrites is heavily at-
tenuated after voltage clamp at the soma for some parts of the
dendritic tree in fish and turtle Purkinje cells. For all the examined 
morphologies, somatic spikes resulted in an elevated non-
oscillating dendritic membrane potential.

BOX 2: Quantification of the contribution of dendritic channel 
activity to information processing in a cerebellar Purkinje cell 
model.
This study used a previously published Purkinje cell model [2, 3] 
with updated synaptic kinetics. The model consisted of 1,600 com-
partments. 1,474 identical spines each composed of a neck and a 
head were attached to the dendritic compartments. One excitatory 
synaptic contact was made with each dendritic spine and 1,695 in-
hibitory GABAa-type synaptic contacts were distributed at random 
across the dendrites. Ionic channels were distributed over three 
zones of the model Purkinje cell, with Na and fast K channels in 
the soma, fast K channels in main dendrite, and Ca channels and 
Ca-activated K channels distributed throughout the entire dendritic 
tree. We calculated the mutual information between the sum of 
dendritically located excitatory currents (IGlu) and the summed cur-
rent of individual types of membrane conductances:

As ICaP and IKc have been previously reported to exhibit the larg-
est currents during cell discharge (De Schutter & Bower, 1994), 
gCaP and gKc were modulated over the ranges of 45-70 and 550-
1000 Sm-2 (around the fitted values of 45 and 800 Sm-2, respec-
tively) to quantify their influence on information transfer.
While the firing rate was constant for different combinations of syn-
aptic input, mutual information was very sensitive to such changes, 
thus disambiguating synaptic activity in dendrites.  Results suggest 
that dendritic excitability modulated by Ca2+ and KCa channels is 
effective in regulating information transfer between excitatory syn-
apses and membrane channels studied, and thus any possible pro-
cessing of that information.
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genesis> add_input voltage_clamp_protocol /Purkinje/segments/soma Vm

There is no limit to the number of current injection protocols or volt-
age clamps that can be added to a model.
Synaptic activation is easily implemented,  e.g. to activate GAB-
Aergic synapses at 1 Hz and 25 Hz Poissonian stimulation on the 
thick dendrites and spine heads of a Purkinje cell, respectively:
 genesis> set_runtime_parameter thickd::gaba::/Purk_GABA FREQUENCY 1
 genesis> set_runtime_parameter spine::/Purk_spine/head/par FREQUENCY 25

The default output of a simulation is the membrane potential at the 
soma. However, output can be specified for any compartment, 
here,  e.g. two dendritic compartments:
  genesis> add_output /Purkinje/segments/b0s03[56] Vm
  genesis> add_output /Purkinje/segments/b1s06[137] Vm

Output of all derived variables known to Heccer can be obtained 
with the add_output command. Specifying one or more outputs 
prevents the default output of the membrane potential at the soma 
being written to file, unless it is also specified. Simulations can also 
be run with the magnitude of a current injection or synaptic event 
times read from a data file. 

Run Simulation
Prior to running a simulation, a variety of runtime options may be 
set, these include amongst others: the update timestep and choice 
of simulator and simulation algorithm. A check can be performed to 
ensure,  e.g. that the model and the experiment to be run during a 
simulation are syntactically correct, variables are not out of range, 
and solvers are correctly initialized:

genesis> check /Purkinje

A simulation is run, e.g. 500ms with:
genesis> run /Purkinje 0.5

By default, when issuing sequential run commands, a simulation 
will continue from its state at the end of the previous run.
The state of a model can be saved at any timestep of a simulation 
with a command that saves the model state following the last 
update timestep of a run:

genesis > simulation_state_save /Purkinje Purkinje_1_run_1.nms

A simulation can then be (re)started from this saved state:
genesis > simulation_state_load Purkinje_1_run_1.nms

The next run command will start the simulation from this reinitial-
ized state. Such functionality provides a convenient way to save 
different states of a simulation and is particularly useful for elimi-
nating redundant startup calculations.
A model can easily be reset to its initial state along with any user 
defined runtime parameters with:

 genesis> reset /Purkinje
Output
Simulation output can be found at its default location:

genesis> sh cat /tmp/data.out

Output can be explored both visually and quantitatively via the 
Studio. For example in the following figure (neurons from the Pur-
kinje comparison study) the dendrites are color-coded (Red: 1ms, 
Blue: 20ms) according to the somatic response after unitary stimu-
lation of a given dendritic location:  

To determine whether the dendritic membrane potential is stable or 
oscillates in conjunction with somatic spiking, a more complex 
output such as the standard deviation from the average dendritic 
membrane potential during somatic spiking can easily be visual-
ized with the Studio following post-processing of simulation output 
(result not shown).
Simulation output can also be piped to external stand-alone appli-
cations such as Matlab, xmgrace, or Mathematica for post-
processing and visualization.

Iterators
Provide a crucial step in model development by matching simula-
tion output to experimental data to tune model parameters and 
thus model behavior. This can be done either by brute force, as is 
typically the case with static parameter space searching with auto-
matically generated batch files or dynamically by using dynamic 
clamp output to tune model parameters in real time.

Simple Scheduler in Perl (SSP)
A schedule is a hierarchical enumeration of 'keys' that tells SSP 
what to do. A SSP schedule defines: which external modules must 
be loaded by SSP, how these modules are linked together (if nec-
essary), how to activate the modules, what the outputs of a simula-
tion are, and how to finish and clean up at the end of a simulation. 
If some of these things are not defined in the schedule, SSP auto-
matically assumes defaults.
Both the Purkinje cell comparison and information processing 
study referred to in this poster were sufficiently complex that simu-
lations were run under SSP control. To override the builtin schedule 
that runs a default simulation of a cell in GENESIS, it is sufficient to 
load the required SSP file: 
 genesis> ssp_load
  generated__edsjb1994__excitation_12__inhibition_0.5__kc_800__cap_45.yml

An SSP file can be automatically generated from the runtime pa-
rameters and options, inputs, and outputs specified during a GEN-
ESIS session:

genesis> save_ssp 
generated__edsjb1994__excitation_25__inhibition_1.0__kc_800__cap_45.yml

This command does not save the model (for which ndf_save 
should be used), but rather all the information required to success-
fully run the specified simulation.

The GENESIS Documentation System
As outlined above, the GENESIS documentation system provides 
documentation ranging from introductory background material and 
tutorials for users, to Doxygenized APIs and HTMLified browsable 
source code for developers. This documentation is available both 
from the GENESIS web site (http://www.genesis-sim.org/) and as 
context dependent help in the new GENESIS GUI (referred to as 
G-Tube, see below). With the exception of Level 1 and 2, docu-
mentation is automatically generated directly from regression tests 
and source code. This provides a guide for writing the Level 1 and 
2 documentation covering specific GENESIS functionality. It em-
ployes a YAML-tagged flat file system maintained in a server re-
pository under control of a distributed version control system. Tags 
define whether these documents are maintained only locally and 
visible only to authorized members of a given project or are ex-
posed to the world by publication at the GENESIS web site. The 
system is fully automated and rebuilds itself every 2 hours, such 
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Introduction
GENESIS (www.genesis-sim.org) has recently been reconfigured 
to adhere to the software design requirements specified by the CBI 
federated software architecture [1] and is now referred to as GEN-
ESIS 3.0 (G-3).

This highly modular approach to the development of simulator soft-
ware leads to independent stand-alone components that integrate 
on a just-in-time basis. Different modules contribute functionality to 
the workflow of model development, model exploration and analy-
sis, model simulation, and (ultimately) data analysis and model 
publication. Here we introduce the G-3 user workflow and through 
it present examples of how G-3 can be employed to define and ex-
amine single neuron models, run simulations, and extract results 
using modern and backward compatible interfaces.

Components of GENESIS 3 (G-3)
Currently, there are nine major G-3 modules associated with either 
user workflow or publication functionality
1. GENESIS 3 SLI (NS-SLI): Allows G-2 scripts to be used by G-3 
by supporting the major functionalities of the G-2 Script Language 
Interpreter.
2. Studio: Visualizes a model stored by the Model Container and 
allows it to be queried in the G-Shell. 
3. G-3 Interactive Shell (G-Shell): A unified command line inter-
face that enables convenient interaction with G-3 components.
4. Model Container: Used to separate biological entities and end-
user concepts from the numerical solvers. By “containing” a bio-
logical model, the Model Container makes the implementation of 
numerical solvers independent of model representation. It provides 
a highly efficient solver-independent internal storage format for 
models. This allows user independent optimizations of the G-3 nu-
merical core. 
5. Heccer: A highly optimized compartmental solver based on G-2 
hsolve functionality.
6. Simple Scheduler in Perl (SSP): A highly configurable sched-
uler that activates and synchronizes the Model Container and 
Heccer to work together on a single simulation in a just-in-time 
manner.
7. Graphic User Interface (G-Tube): Evoked from either a Unix 
terminal prompt or the G-Shell, a GUI is currently being developed.
8. Project Browser: A webserver that allows projects to be 
browsed and simulation results inspected and compared with a 
web browser such as Firefox. 
9. GENESIS Documentation System: User and developer docu-
mentation in seven levels
Level 1: Introductory material. 
Level 2: User guides and documentation.
Level 3: Automated regression testing and use cases.
Level 4: Technical guide specification.
Level 5: Algorithm documentation.
Level 6: API documentation.
Level 7: Inline source code documentation

Data Flows in Science
The relationship between experiment and simulation in computa-
tional neuroscience is illustrated in the following figure.

Conducting experiments and running simulations are two iterative 
processes connected by a feedback loop that uses interpretation of 
results to design new experimental setups and model construc-
tions. From this perspective, simulations provide a framework to or-
ganize our understanding of biological systems. GENESIS sup-
ports the lower loop within the system as shown above.

GENESIS User Workflow 
Over 20 years of experience in the development and use of GEN-
ESIS has led to the identification of a user workflow that can be 
employed to organize activities such as project development, GUI 
functionality, and documentation such as user tutorials. The typical 
workflow is composed of five basic steps, summarized in the fol-
lowing figure.

1. Construct Model: Create simple models directly within the G-
Shell by entering commands. More complex models can be im-
ported into the G-Shell from either the GENESIS model libraries or 
from other external model libraries. The model can also be ex-
plored, checked, and saved.
2. Design Experiment: Set model parameter values specific to a 
given simulation, the stimulus parameters for a given simulation 
run or “experiment”, and/or the output variables to be stored for 
subsequent analysis.
3. Run Simulation: Configure runtime options, check, run, reset 
simulation, and save model state. The model state can be saved at 
any time step during a simulation. This allows a model to be im-
ported into a subsequent GENESIS session. Output is flushed to 
raw result storage for subsequent data analysis.
4. Process Output: Check simulation output and the validity of re-
sults to determine whether the output exists in the correct loca-
tions. Output can be analyzed either within GENESIS or piped to 
external applications such as Matlab, xmgrace, or Mathematica.
5. Iterators: A G-3 modeling project is established by the introduc-
tion of iterators into the user workflow. The iterators achieve this by 
closing the loop between the output of results and model construc-
tion. Iterators include: automated construction of simulations and 
batch files; static parameter searching; and active parameter 
searching using dynamic clamp technology. 
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Results
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GENESIS User Interfaces
To facilitate the G-3 user workflow several different user interfaces 
have been developed. They include: a Script Language Interface 
that provides backward compatibility with previous versions of 
GENESIS (NS-SLI), an interactive shell that interfaces with Python 
and Perl (G-Shell), and two contributed G-3 components, the 
Studio and the Project Browser. As the various components of G-3 
are independent stand-alone modules, they can also be called di-
rectly from the command line of a Unix terminal window, or the G-3 
console window to be provided with the Windows version.

Overview of New GENESIS Functionality
G-3 functionality is now introduced through the steps in the user 
workflow. We use examples from two recent projects that em-
ployed G-3: (i) Morphological and functional comparison of cer-
ebellar Purkinje neurons from four different species (see Box 1 for 
details), and (ii) Quantification of the contribution of dendritic chan-
nel activity to information processing in a cerebellar Purkinje cell 
model (see Box 2 for details).

Construct Model
Backward compatibility: G-3 supports backward compatibility 
with G-2 scripts. Model cells generated with previous versions of 
GENESIS (the .g and .p file formats) are accessible to the G-3 en-
vironment via the module NS-SLI. This module provides a bridge 
between the G-2 SLI and G-3. For example, the following com-
mand will import a given G-2 model into the Model Container inside 
the G-Shell, run the defined simulation, and save any generated 
output:   

genesis> sli_run /usr/local/nsgenesis/tests/scripts/PurkM9_model/CURRENT9.g

Alternatively, the command: 
genesis> sli_load /usr/local/nsgenesis/tests/scripts/PurkM9_model/CURRENT9.g

will load the G-2 model and all its dependencies. The model can 
then be explored, checked and saved. For example, to find the 
number of segments and dendritic branches loaded for the model:

genesis> querymachine segmenterlinearize /Purkinje
      Number of segments: 4548
      Number of segments without parents: 1
      Number of segment tips: 1474

The properties of a given compartment can be found with e.g.
  genesis> show_model_parameters /Purkinje/segments/b0s03[56]
   -
        'parameter name': RA
        type: number
        value: 2.5
     -
        'parameter name': RM
        type: number
        value: 1
     -
        'parameter name': CM
        type: number
        value: 0.0164

The scaled value of specific parameters can be checked, e.g. the 
membrane capacitance:

genesis> show_parameter_scaled /Purkinje/segments/b0s03[56] CM
    scaled value = 6.50291e-12

Parameter values can also be reinitialized,  e.g. the membrane po-
tential of a given compartment:

genesis> set_model_parameter /Purkinje/segments/b0s03[56] Vm_init -0.0680

The NDF File Format: A novel feature of G-3 is its powerful new 
declarative file format (NDF). This replaces those aspects of the 
GENESIS 2 Script Language Interpreter (SLI) that support model 
construction and exploration.
A NDF file has four sections that are not necessarily filled, but must 
be present in the given order. They include a: (i) Preamble, (ii) 
Import, (iii) Private Models, and (iv) Public Models sections 
(indicated in bold in the figure below) in a file that has the following 
general form:
    #!/usr/local/bin/neurospacesparse  
    //-*- NEUROSPACES -*-  
    // default location for file comments  
    NEUROSPACES NDF  
    IMPORT  
        FILE <namespace> "<directorypath>/<filename.ndf>"  
         . . . <other files may be imported as required>  
    END IMPORT  
    PRIVATE_MODELS  
        ALIAS <namespace>::/<source label> <target label> END ALIAS  
            . . . <other aliases may be defined as required>  
    END PRIVATE_MODELS  
    PUBLIC_MODELS  
        CELL <morphology name>  
            SEGMENT_GROUP segments  
                . . . <morphological details>  
            END SEGMENT_GROUP  
        END CELL  
    END PUBLIC_MODELS

To enhance simulator interoperability, models specified in NDF, 
SWC, Python, Perl, and XML formats can be loaded into the G-
Shell. They can then be operated on in a seamless and integrated 
manner along with any G-2 SLI models that may be present to de-
velop a new model cell:
     genesis> swc_load morphologies/C170897A-P3.CNG.swc
     genesis> xml_load channels/hodgkin-huxley/gaba.xml
     genesis> ndf_load channels/hodgkin-huxley/ampa.ndf
     genesis> npl_load channels/hodgkin-huxley/na.npl 
     genesis> npy_load channels/hodgkin-huxley/k.npy 

Once one or more models have been loaded they can be saved in 
the G-3 NDF file format along with any changes that have been 
made to the original model(s):

genesis> ndf_save /Purkinje Purkinje_1.ndf

Once a model is imported, it can be explored either directly from 
the G-Shell (as described above) or via the Studio. The Studio pro-
vides a GUI that supports direct exploration of model parameters. 
Importantly, for backward compatibility, as suggested above, once 
a G-2 model has been loaded into the G-Shell, the Studio can be 
employed to explore model parameters and structure. Here,  e.g. 
are details of a rat Purkinje neuron used in the Purkinje neuron 
comparison study (see Box 1):

Design Experiment
Experimental design primarily consists of specifiying the inputs and 
outputs of a simulation. Inputs consist of how a model is activated, 
e.g. by current injection, voltage clamp, or synaptic activation. A 
2nA current injection can be set at the soma with:

genesis> set_runtime_parameter /Purkinje/segments/soma INJECT 2e-9

and checked with:
     genesis> show_runtime_parameters
      runtime_parameters:
        - component_name: /Purkinje/segments/soma
          field: INJECT
          value: 2e-9
          value_type: number

Alternatively, the Perfect Clamp utility provides a simple voltage 
clamp protocol to one or more specified compartment(s) 
of a neuronal morphology. Here, e.g. the voltage clamp circuitry 
object is created with a holding potential of -60mV:

genesis> add_inputclass perfectclamp voltage_clamp_protocol /Purkinje
   voltage_clamp_protocol command -0.060

Apply the voltage clamp to the Purkinje cell soma:
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