
Using GENESIS 3 for single neuron modeling.
Allan D. Coop1, Hugo Cornelis2, Mando Rodriguez2, James M. Bower2.
1Dept. Epidemiology and Biostatistics, 2Research Imaging Center, University of Texas Health Sciences Center, San Antonio, Texas 78229, USA.

that any new files are quickly and automatically incorporated into
the documentation system.

G-Tube
The G-3 GUI is fully configurable and starts from the user workflow.
The figure below shows a popup menu revealed by rolling over
Step 1 in the user workflow. The menu item Load Model has been
selected. This generates a list of the NDF files that are available.
The model edsjb1994_partitioned.ndf has been selected and
loaded into the G-Shell. The G-Shell (lower window in GUI) reports
that the model is successfully loaded. It can now be explored
before continuing with Step 2 of the user workflow.

Conclusions
The CBI architecture exhibits several novel features. For example,
the separation of stimulus protocols from a given model cell to par-
tition a model from its numerical simulation. This allows both to be
combined dynamically at run time for a given simulation and simpli-
fies the generation of batch files for multiple simulations. Impor-
tantly, this separation allows any simulation to be run with any
model, a feature that greatly facilitates iterative model development
and comparison.
The isolation of a cell model from a given simulation configuration
also enables convenient exploration and quantification of proper-
ties of the biological model. For example, no special functions or
scripting are required to quantify properties of a model cell such as
total or partial volumes or surface areas, the number of dendritic
branches or branch points per dendritic tip, or the average so-
matopetal to dendritic tip distance. Further, with G-3, the Model
Container can be queried directly by simple commands and com-
mand line options.

BOX 1: Morphological and functional comparison of cerebellar
Purkinje neurons from four different species.
This study aimed to (i) determine the computational consequences
of differences in the dendritic morphologies of Purkinje cells found
in different species of mammals and non-mammals, and (ii) char-
acterize the morphological and functional difference between cer-
ebellar Purkinje neurons from different species, including: fish,
turtle, guinea pig, and rat.

To characterize the morphological differences between species,
common morphological parameters were examined, e.g. number
of dendritic branch points and total cell volume and surface area.
Passive models of all morphologies were constructed using the
G-3 simulation environment. Three different stimulation protocols
were used to characterize the passive dendritic structure of each
morphology by running a total of over 120,000 simulations. Studies
were designed to obtain insight into: (i) the steady state electro-
tonic structure of the Purkinje cell dendritic trees, (ii) somatic re-
sponses to excitatory synaptic events, given to a single dendritic
compartment, and (iii) by recording the dendritic membrane poten-
tial resulting from somatic action potentials generated with a simu-
lated dynamic voltage clamp at the soma. Morphologies were visu-
ally and quantitatively different between the different species.
Mammalian Purkinje cells have more dendritic tips and branch
points, and a greater overall surface, but the overall cell volume is
lower, resulting in a greater surface to volume ratio. The distance
between the soma and the dendritic tips is decreased in mammals.
The steady state membrane potential of the dendrites is heavily at-
tenuated after voltage clamp at the soma for some parts of the
dendritic tree in fish and turtle Purkinje cells. For all the examined
morphologies, somatic spikes resulted in an elevated non-
oscillating dendritic membrane potential.

BOX 2: Quantification of the contribution of dendritic channel
activity to information processing in a cerebellar Purkinje cell
model.
This study used a previously published Purkinje cell model [2, 3]
with updated synaptic kinetics. The model consisted of 1,600 com-
partments. 1,474 identical spines each composed of a neck and a
head were attached to the dendritic compartments. One excitatory
synaptic contact was made with each dendritic spine and 1,695 in-
hibitory GABAa-type synaptic contacts were distributed at random
across the dendrites. Ionic channels were distributed over three
zones of the model Purkinje cell, with Na and fast K channels in
the soma, fast K channels in main dendrite, and Ca channels and
Ca-activated K channels distributed throughout the entire dendritic
tree. We calculated the mutual information between the sum of
dendritically located excitatory currents (IGlu) and the summed cur-
rent of individual types of membrane conductances:

As ICaP and IKc have been previously reported to exhibit the larg-
est currents during cell discharge (De Schutter & Bower, 1994),
gCaP and gKc were modulated over the ranges of 45-70 and 550-
1000 Sm-2 (around the fitted values of 45 and 800 Sm-2, respec-
tively) to quantify their influence on information transfer.
While the firing rate was constant for different combinations of syn-
aptic input, mutual information was very sensitive to such changes,
thus disambiguating synaptic activity in dendrites. Results suggest
that dendritic excitability modulated by Ca2+ and KCa channels is
effective in regulating information transfer between excitatory syn-
apses and membrane channels studied, and thus any possible pro-
cessing of that information.

References
[1] Cornelis H, Edwards M, Coop AD, Bower JM (2008) The CBI architecture for computational simulation of
realistic neurons and circuits in the GENESIS 3 software federation. BMC Neuroscience 9:P88.
[2] De Schutter E & Bower JM (1994) An active membrane model of the cerebellar Purkinje cell. I. Simulation
of current clamps in slice. J Neurophysiology 71:375-400.
[3] De Schutter E & Bower JM (1994) An active membrane model of the cerebellar Purkinje cell II. Simulation
of synaptic responses. J Neurophysiology 71:401-419.

Fish Turtle Guinea Pig Rat
100 μm

genesis> add_input voltage_clamp_protocol /Purkinje/segments/soma Vm

There is no limit to the number of current injection protocols or volt-
age clamps that can be added to a model.
Synaptic activation is easily implemented, e.g. to activate GAB-
Aergic synapses at 1 Hz and 25 Hz Poissonian stimulation on the
thick dendrites and spine heads of a Purkinje cell, respectively:
 genesis> set_runtime_parameter thickd::gaba::/Purk_GABA FREQUENCY 1
 genesis> set_runtime_parameter spine::/Purk_spine/head/par FREQUENCY 25

The default output of a simulation is the membrane potential at the
soma. However, output can be specified for any compartment,
here, e.g. two dendritic compartments:
 genesis> add_output /Purkinje/segments/b0s03[56] Vm
 genesis> add_output /Purkinje/segments/b1s06[137] Vm

Output of all derived variables known to Heccer can be obtained
with the add_output command. Specifying one or more outputs
prevents the default output of the membrane potential at the soma
being written to file, unless it is also specified. Simulations can also
be run with the magnitude of a current injection or synaptic event
times read from a data file.

Run Simulation
Prior to running a simulation, a variety of runtime options may be
set, these include amongst others: the update timestep and choice
of simulator and simulation algorithm. A check can be performed to
ensure, e.g. that the model and the experiment to be run during a
simulation are syntactically correct, variables are not out of range,
and solvers are correctly initialized:

genesis> check /Purkinje

A simulation is run, e.g. 500ms with:
genesis> run /Purkinje 0.5

By default, when issuing sequential run commands, a simulation
will continue from its state at the end of the previous run.
The state of a model can be saved at any timestep of a simulation
with a command that saves the model state following the last
update timestep of a run:

genesis > simulation_state_save /Purkinje Purkinje_1_run_1.nms

A simulation can then be (re)started from this saved state:
genesis > simulation_state_load Purkinje_1_run_1.nms

The next run command will start the simulation from this reinitial-
ized state. Such functionality provides a convenient way to save
different states of a simulation and is particularly useful for elimi-
nating redundant startup calculations.
A model can easily be reset to its initial state along with any user
defined runtime parameters with:

 genesis> reset /Purkinje
Output
Simulation output can be found at its default location:

genesis> sh cat /tmp/data.out

Output can be explored both visually and quantitatively via the
Studio. For example in the following figure (neurons from the Pur-
kinje comparison study) the dendrites are color-coded (Red: 1ms,
Blue: 20ms) according to the somatic response after unitary stimu-
lation of a given dendritic location:

To determine whether the dendritic membrane potential is stable or
oscillates in conjunction with somatic spiking, a more complex
output such as the standard deviation from the average dendritic
membrane potential during somatic spiking can easily be visual-
ized with the Studio following post-processing of simulation output
(result not shown).
Simulation output can also be piped to external stand-alone appli-
cations such as Matlab, xmgrace, or Mathematica for post-
processing and visualization.

Iterators
Provide a crucial step in model development by matching simula-
tion output to experimental data to tune model parameters and
thus model behavior. This can be done either by brute force, as is
typically the case with static parameter space searching with auto-
matically generated batch files or dynamically by using dynamic
clamp output to tune model parameters in real time.

Simple Scheduler in Perl (SSP)
A schedule is a hierarchical enumeration of 'keys' that tells SSP
what to do. A SSP schedule defines: which external modules must
be loaded by SSP, how these modules are linked together (if nec-
essary), how to activate the modules, what the outputs of a simula-
tion are, and how to finish and clean up at the end of a simulation.
If some of these things are not defined in the schedule, SSP auto-
matically assumes defaults.
Both the Purkinje cell comparison and information processing
study referred to in this poster were sufficiently complex that simu-
lations were run under SSP control. To override the builtin schedule
that runs a default simulation of a cell in GENESIS, it is sufficient to
load the required SSP file:
 genesis> ssp_load
 generated__edsjb1994__excitation_12__inhibition_0.5__kc_800__cap_45.yml

An SSP file can be automatically generated from the runtime pa-
rameters and options, inputs, and outputs specified during a GEN-
ESIS session:

genesis> save_ssp
generated__edsjb1994__excitation_25__inhibition_1.0__kc_800__cap_45.yml

This command does not save the model (for which ndf_save
should be used), but rather all the information required to success-
fully run the specified simulation.

The GENESIS Documentation System
As outlined above, the GENESIS documentation system provides
documentation ranging from introductory background material and
tutorials for users, to Doxygenized APIs and HTMLified browsable
source code for developers. This documentation is available both
from the GENESIS web site (http://www.genesis-sim.org/) and as
context dependent help in the new GENESIS GUI (referred to as
G-Tube, see below). With the exception of Level 1 and 2, docu-
mentation is automatically generated directly from regression tests
and source code. This provides a guide for writing the Level 1 and
2 documentation covering specific GENESIS functionality. It em-
ployes a YAML-tagged flat file system maintained in a server re-
pository under control of a distributed version control system. Tags
define whether these documents are maintained only locally and
visible only to authorized members of a given project or are ex-
posed to the world by publication at the GENESIS web site. The
system is fully automated and rebuilds itself every 2 hours, such

IK2
IKc

ICap
INapICat

IGlu

Ih

IKm

IGABAa

INaf

IKa

IKdr

Construct Model Design Experiment Run Simulation Output

Iterators

Introduction
GENESIS (www.genesis-sim.org) has recently been reconfigured
to adhere to the software design requirements specified by the CBI
federated software architecture [1] and is now referred to as GEN-
ESIS 3.0 (G-3).

This highly modular approach to the development of simulator soft-
ware leads to independent stand-alone components that integrate
on a just-in-time basis. Different modules contribute functionality to
the workflow of model development, model exploration and analy-
sis, model simulation, and (ultimately) data analysis and model
publication. Here we introduce the G-3 user workflow and through
it present examples of how G-3 can be employed to define and ex-
amine single neuron models, run simulations, and extract results
using modern and backward compatible interfaces.

Components of GENESIS 3 (G-3)
Currently, there are nine major G-3 modules associated with either
user workflow or publication functionality
1. GENESIS 3 SLI (NS-SLI): Allows G-2 scripts to be used by G-3
by supporting the major functionalities of the G-2 Script Language
Interpreter.
2. Studio: Visualizes a model stored by the Model Container and
allows it to be queried in the G-Shell.
3. G-3 Interactive Shell (G-Shell): A unified command line inter-
face that enables convenient interaction with G-3 components.
4. Model Container: Used to separate biological entities and end-
user concepts from the numerical solvers. By “containing” a bio-
logical model, the Model Container makes the implementation of
numerical solvers independent of model representation. It provides
a highly efficient solver-independent internal storage format for
models. This allows user independent optimizations of the G-3 nu-
merical core.
5. Heccer: A highly optimized compartmental solver based on G-2
hsolve functionality.
6. Simple Scheduler in Perl (SSP): A highly configurable sched-
uler that activates and synchronizes the Model Container and
Heccer to work together on a single simulation in a just-in-time
manner.
7. Graphic User Interface (G-Tube): Evoked from either a Unix
terminal prompt or the G-Shell, a GUI is currently being developed.
8. Project Browser: A webserver that allows projects to be
browsed and simulation results inspected and compared with a
web browser such as Firefox.
9. GENESIS Documentation System: User and developer docu-
mentation in seven levels
Level 1: Introductory material.
Level 2: User guides and documentation.
Level 3: Automated regression testing and use cases.
Level 4: Technical guide specification.
Level 5: Algorithm documentation.
Level 6: API documentation.
Level 7: Inline source code documentation

Data Flows in Science
The relationship between experiment and simulation in computa-
tional neuroscience is illustrated in the following figure.

Conducting experiments and running simulations are two iterative
processes connected by a feedback loop that uses interpretation of
results to design new experimental setups and model construc-
tions. From this perspective, simulations provide a framework to or-
ganize our understanding of biological systems. GENESIS sup-
ports the lower loop within the system as shown above.

GENESIS User Workflow
Over 20 years of experience in the development and use of GEN-
ESIS has led to the identification of a user workflow that can be
employed to organize activities such as project development, GUI
functionality, and documentation such as user tutorials. The typical
workflow is composed of five basic steps, summarized in the fol-
lowing figure.

1. Construct Model: Create simple models directly within the G-
Shell by entering commands. More complex models can be im-
ported into the G-Shell from either the GENESIS model libraries or
from other external model libraries. The model can also be ex-
plored, checked, and saved.
2. Design Experiment: Set model parameter values specific to a
given simulation, the stimulus parameters for a given simulation
run or “experiment”, and/or the output variables to be stored for
subsequent analysis.
3. Run Simulation: Configure runtime options, check, run, reset
simulation, and save model state. The model state can be saved at
any time step during a simulation. This allows a model to be im-
ported into a subsequent GENESIS session. Output is flushed to
raw result storage for subsequent data analysis.
4. Process Output: Check simulation output and the validity of re-
sults to determine whether the output exists in the correct loca-
tions. Output can be analyzed either within GENESIS or piped to
external applications such as Matlab, xmgrace, or Mathematica.
5. Iterators: A G-3 modeling project is established by the introduc-
tion of iterators into the user workflow. The iterators achieve this by
closing the loop between the output of results and model construc-
tion. Iterators include: automated construction of simulations and
batch files; static parameter searching; and active parameter
searching using dynamic clamp technology.

Interpretation

Construct Model

Setup Experiment Experiment

Results

Simulation

GENESIS User Interfaces
To facilitate the G-3 user workflow several different user interfaces
have been developed. They include: a Script Language Interface
that provides backward compatibility with previous versions of
GENESIS (NS-SLI), an interactive shell that interfaces with Python
and Perl (G-Shell), and two contributed G-3 components, the
Studio and the Project Browser. As the various components of G-3
are independent stand-alone modules, they can also be called di-
rectly from the command line of a Unix terminal window, or the G-3
console window to be provided with the Windows version.

Overview of New GENESIS Functionality
G-3 functionality is now introduced through the steps in the user
workflow. We use examples from two recent projects that em-
ployed G-3: (i) Morphological and functional comparison of cer-
ebellar Purkinje neurons from four different species (see Box 1 for
details), and (ii) Quantification of the contribution of dendritic chan-
nel activity to information processing in a cerebellar Purkinje cell
model (see Box 2 for details).

Construct Model
Backward compatibility: G-3 supports backward compatibility
with G-2 scripts. Model cells generated with previous versions of
GENESIS (the .g and .p file formats) are accessible to the G-3 en-
vironment via the module NS-SLI. This module provides a bridge
between the G-2 SLI and G-3. For example, the following com-
mand will import a given G-2 model into the Model Container inside
the G-Shell, run the defined simulation, and save any generated
output:

genesis> sli_run /usr/local/nsgenesis/tests/scripts/PurkM9_model/CURRENT9.g

Alternatively, the command:
genesis> sli_load /usr/local/nsgenesis/tests/scripts/PurkM9_model/CURRENT9.g

will load the G-2 model and all its dependencies. The model can
then be explored, checked and saved. For example, to find the
number of segments and dendritic branches loaded for the model:

genesis> querymachine segmenterlinearize /Purkinje
 Number of segments: 4548
 Number of segments without parents: 1
 Number of segment tips: 1474

The properties of a given compartment can be found with e.g.
 genesis> show_model_parameters /Purkinje/segments/b0s03[56]
 -
 'parameter name': RA
 type: number
 value: 2.5
 -
 'parameter name': RM
 type: number
 value: 1
 -
 'parameter name': CM
 type: number
 value: 0.0164

The scaled value of specific parameters can be checked, e.g. the
membrane capacitance:

genesis> show_parameter_scaled /Purkinje/segments/b0s03[56] CM
 scaled value = 6.50291e-12

Parameter values can also be reinitialized, e.g. the membrane po-
tential of a given compartment:

genesis> set_model_parameter /Purkinje/segments/b0s03[56] Vm_init -0.0680

The NDF File Format: A novel feature of G-3 is its powerful new
declarative file format (NDF). This replaces those aspects of the
GENESIS 2 Script Language Interpreter (SLI) that support model
construction and exploration.
A NDF file has four sections that are not necessarily filled, but must
be present in the given order. They include a: (i) Preamble, (ii)
Import, (iii) Private Models, and (iv) Public Models sections
(indicated in bold in the figure below) in a file that has the following
general form:
 #!/usr/local/bin/neurospacesparse
 //-*- NEUROSPACES -*-
 // default location for file comments
 NEUROSPACES NDF
 IMPORT
 FILE <namespace> "<directorypath>/<filename.ndf>"
 . . . <other files may be imported as required>
 END IMPORT
 PRIVATE_MODELS
 ALIAS <namespace>::/<source label> <target label> END ALIAS
 . . . <other aliases may be defined as required>
 END PRIVATE_MODELS
 PUBLIC_MODELS
 CELL <morphology name>
 SEGMENT_GROUP segments
 . . . <morphological details>
 END SEGMENT_GROUP
 END CELL
 END PUBLIC_MODELS

To enhance simulator interoperability, models specified in NDF,
SWC, Python, Perl, and XML formats can be loaded into the G-
Shell. They can then be operated on in a seamless and integrated
manner along with any G-2 SLI models that may be present to de-
velop a new model cell:
 genesis> swc_load morphologies/C170897A-P3.CNG.swc
 genesis> xml_load channels/hodgkin-huxley/gaba.xml
 genesis> ndf_load channels/hodgkin-huxley/ampa.ndf
 genesis> npl_load channels/hodgkin-huxley/na.npl
 genesis> npy_load channels/hodgkin-huxley/k.npy

Once one or more models have been loaded they can be saved in
the G-3 NDF file format along with any changes that have been
made to the original model(s):

genesis> ndf_save /Purkinje Purkinje_1.ndf

Once a model is imported, it can be explored either directly from
the G-Shell (as described above) or via the Studio. The Studio pro-
vides a GUI that supports direct exploration of model parameters.
Importantly, for backward compatibility, as suggested above, once
a G-2 model has been loaded into the G-Shell, the Studio can be
employed to explore model parameters and structure. Here, e.g.
are details of a rat Purkinje neuron used in the Purkinje neuron
comparison study (see Box 1):

Design Experiment
Experimental design primarily consists of specifiying the inputs and
outputs of a simulation. Inputs consist of how a model is activated,
e.g. by current injection, voltage clamp, or synaptic activation. A
2nA current injection can be set at the soma with:

genesis> set_runtime_parameter /Purkinje/segments/soma INJECT 2e-9

and checked with:
 genesis> show_runtime_parameters
 runtime_parameters:
 - component_name: /Purkinje/segments/soma
 field: INJECT
 value: 2e-9
 value_type: number

Alternatively, the Perfect Clamp utility provides a simple voltage
clamp protocol to one or more specified compartment(s)
of a neuronal morphology. Here, e.g. the voltage clamp circuitry
object is created with a holding potential of -60mV:

genesis> add_inputclass perfectclamp voltage_clamp_protocol /Purkinje
 voltage_clamp_protocol command -0.060

Apply the voltage clamp to the Purkinje cell soma:

Fish Turtle Guinea Pig Rat100 μm

Numerics

Biology

Data BindingsFunction Bindings

Solvers

Scripting
Libraries &

Applications

Database
InterfacesModel GUI

The CBI Federated Software Architecture

0.0

1.0

2.0

3.0

4.0

5.0

6.0

M
ut

ua
l I

nf
or

m
at

io
n

(b
its

/s
)

gKc (550-1000 Sm-2)
gCaP (25-70 Sm-2)

IK2 ICaPICaT IKa IKdr IKm INaF INaPIKhKc IGABAa Vm
Current

